1,778 research outputs found

    Patent Institutions: Shifting Interactions Between Legal Actors

    Get PDF
    This contribution to the Research Handbook on Economics of Intellectual Property Rights (Vol. 1 Theory) addresses interactions between the principal legal institutions of the U.S. patent system. It considers legal, strategic, and normative perspectives on these interactions as they have evolved over the last 35 years. Early centralization of power by the U.S. Court of Appeals for the Federal Circuit, newly created in 1982, established a regime dominated by the appellate court\u27s bright-line rules. More recently, aggressive Supreme Court and Congressional intervention have respectively reinvigorated patent law standards and led to significant devolution of power to inferior tribunals, including newly created tribunals like the USPTO\u27s Patent Trial and Appeals Board. This new era in institutional interaction creates a host of fresh empirical and normative research questions for scholars. The contribution concludes by outlining a research agenda

    Community-Based Monitoring of Tigers in Nepal

    Get PDF
    Local citizens recruited and trained as bagh heralu (“tiger watchers”) helped us to collect information on the distribution of tiger throughout the Terai of Nepal. While the ultimate goal of the bagh heralu program was to map the current metapopulation of tigers in Nepal and to determine extent of breeding outside protected areas, the bagh heralu approach was useful not only because it facilitated data collection but also because it enhanced conservation efforts in multiple ways.Over the five years of the program, bagh heralu became knowledgeable about basic tiger biology and they became recognized in their communities as local tiger experts. Their knowledge of the ecological needs of tigers and strong local interest in the project increased discussions of tiger conservation in local communities throughout the lowlands. This case study indicates that the citizen monitoring programs has the potential to shift some of the responsibility for and economic benefits from biodiversity conservation from government agencies and non-governmental organizations to local communities, thus enhancing efforts to manage resources sustainably across entire landscapes. This case study serves as an example of a citizen monitoring project in a developing country and raises questions relevant to its possible expansion and to broader questions of citizen science in a developing country context

    Early Women, Late Men: Timing Attitudes and Gender Differences in Marriage

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138327/1/jomf12426_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138327/2/jomf12426.pd

    Removing exogenous information using pedigree data

    Full text link
    Management of certain populations requires the preservation of its pure genetic background. When, for different reasons, undesired alleles are introduced, the original genetic conformation must be recovered. The present study tested, through computer simulations, the power of recovery (the ability for removing the foreign information) from genealogical data. Simulated scenarios comprised different numbers of exogenous individuals taking partofthe founder population anddifferent numbers of unmanaged generations before the removal program started. Strategies were based on variables arising from classical pedigree analyses such as founders? contribution and partial coancestry. The ef?ciency of the different strategies was measured as the proportion of native genetic information remaining in the population. Consequences on the inbreeding and coancestry levels of the population were also evaluated. Minimisation of the exogenous founders? contributions was the most powerful method, removing the largest amount of genetic information in just one generation.However, as a side effect, it led to the highest values of inbreeding. Scenarios with a large amount of initial exogenous alleles (i.e. high percentage of non native founders), or many generations of mixing became very dif?cult to recover, pointing out the importance of being careful about introgression events in populatio

    A multiscale analysis of gene flow for the New England cottontail, an imperiled habitat specialist in a fragmented landscape

    Get PDF
    Landscape features of anthropogenic or natural origin can influence organisms\u27 dispersal patterns and the connectivity of populations. Understanding these relationships is of broad interest in ecology and evolutionary biology and provides key insights for habitat conservation planning at the landscape scale. This knowledge is germane to restoration efforts for the New England cottontail (Sylvilagus transitionalis), an early successional habitat specialist of conservation concern. We evaluated local population structure and measures of genetic diversity of a geographically isolated population of cottontails in the northeastern United States. We also conducted a multiscale landscape genetic analysis, in which we assessed genetic discontinuities relative to the landscape and developed several resistance models to test hypotheses about landscape features that promote or inhibit cottontail dispersal within and across the local populations. Bayesian clustering identified four genetically distinct populations, with very little migration among them, and additional substructure within one of those populations. These populations had private alleles, low genetic diversity, critically low effective population sizes (3.2-36.7), and evidence of recent genetic bottlenecks. Major highways and a river were found to limit cottontail dispersal and to separate populations. The habitat along roadsides, railroad beds, and utility corridors, on the other hand, was found to facilitate cottontail movement among patches. The relative importance of dispersal barriers and facilitators on gene flow varied among populations in relation to landscape composition, demonstrating the complexity and context dependency of factors influencing gene flow and highlighting the importance of replication and scale in landscape genetic studies. Our findings provide information for the design of restoration landscapes for the New England cottontail and also highlight the dual influence of roads, as both barriers and facilitators of dispersal for an early successional habitat specialist in a fragmented landscape

    Rabies virus in a pregnant naturally infected southern yellow bat (Lasiurus ega)

    Full text link
    Current knowledge on bat lyssavirus infections in their native hosts is limited and little is known about the virulence, virus dissemination and transmission among free-living insectivorous bats. The present study is a brief description of rabies virus (RABV) dissemination in tissues of a naturally infected pregnant southern yellow bat (Lasiurus ega) and its fetuses, obtained by reverse-transcriptase polymerase chain reaction (RT-PCR). The RT-PCR was positive in samples from the brain, salivary gland, tongue, lungs, heart, kidneys and liver. On the other hand, the placenta, three fetuses, spleen, intestine and brown fat tissue tested negative. This research demonstrated the absence of rabies virus in the fetuses, thus, in this specific case, the transplacentary transmission was not observed

    Habitat corridors facilitate genetic resilience irrespective of species dispersal abilities or population sizes

    Full text link
    Corridors are frequently proposed to connect patches of habitat that have become isolated due to human‐mediated alterations to the landscape. While it is understood that corridors can facilitate dispersal between patches, it remains unknown whether corridors can mitigate the negative genetic effects for entire communities modified by habitat fragmentation. These negative genetic effects, which include reduced genetic diversity, limit the potential for populations to respond to selective agents such as disease epidemics and global climate change. We provide clear evidence from a forward‐time, agent‐based model (ABM) that corridors can facilitate genetic resilience in fragmented habitats across a broad range of species dispersal abilities and population sizes. Our results demonstrate that even modest increases in corridor width decreased the genetic differentiation between patches and increased the genetic diversity and effective population size within patches. Furthermore, we document a trade‐off between corridor quality and corridor design whereby populations connected by high‐quality habitat (i.e., low corridor mortality) are more resilient to suboptimal corridor design (e.g., long and narrow corridors). The ABM also revealed that species interactions can play a greater role than corridor design in shaping the genetic responses of populations to corridors. These results demonstrate how corridors can provide long‐term conservation benefits that extend beyond targeted taxa and scale up to entire communities irrespective of species dispersal abilities or population sizes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111750/1/eva12255.pd

    Thermochemistry of Alane Complexes for Hydrogen Storage: A Theoretical and Experimental Comparison

    Get PDF
    Knowledge of the relative stabilities of alane (AlH3) complexes with electron donors is essential for identifying hydrogen storage materials for vehicular applications that can be regenerated by off-board methods; however, almost no thermodynamic data are available to make this assessment. To fill this gap, we employed the G4(MP2) method to determine heats of formation, entropies, and Gibbs free energies of formation for thirty-eight alane complexes with NH3-nRn (R = Me, Et; n = 0-3), pyridine, pyrazine, triethylenediamine (TEDA), quinuclidine, OH2-nRn (R = Me, Et; n = 0-2), dioxane, and tetrahydrofuran (THF). Monomer, bis, and selected dimer complex geometries were considered. Using these data, we computed the thermodynamics of the key formation and dehydrogenation reactions that would occur during hydrogen delivery and alane regeneration, from which trends in complex stability were identified. These predictions were tested by synthesizing six amine-alane complexes involving trimethylamine, triethylamine, dimethylethylamine, TEDA, quinuclidine, and hexamine, and obtaining upper limits of delta G for their formation from metallic aluminum. Combining these computational and experimental results, we establish a criterion for complex stability relevant to hydrogen storage that can be used to assess potential ligands prior to attempting synthesis of the alane complex. Based on this, we conclude that only a subset of the tertiary amine complexes considered and none of the ether complexes can be successfully formed by direct reaction with aluminum and regenerated in an alane-based hydrogen storage system.Comment: Accepted by the Journal of Physical Chemistry

    Locus-specific introgression in young hybrid swarms:Drift may dominate selection

    Get PDF
    Closely related species that have previously inhabited geographically separated ranges are hybridizing at an increasing rate due to human disruptions. These human-mediated hybrid zones can be used to study reproductive isolation between species at secondary contact, including examining locus-specific rates of introgression. Introgression is expected to be heterogenous across the genome, reflecting variation in selection. Those loci that introgress especially slowly are good candidates for being involved in reproductive isolation, while those loci that introgress quickly may be involved in adaptive introgression. In the context of conservation, policy makers are especially concerned about introduced alleles moving quickly into the background of a native or endemic species, as these alleles could replace the native alleles in the population, leading to extinction via hybridization. We applied genomic cline analyses to 44,997 SNPs to identify loci introgressing more or less when compared to the genome wide expectation in a human-mediated hybridizing population of red deer and sika in Kintyre Scotland. We found 11.4% of SNPs had cline centres that were significantly different from the genome wide expectation, and 17.6% of all SNPs had excess rates of introgression. Based on simulations, we believe that many of these markers have diverged from the genome-wide average due to drift, rather than because of selection, and we suggest that these simulations can be useful as a null distribution for future studies of genomic clines. Future work on red deer and sika could determine the policy implications of allelic-replacement due to drift rather than selection, and could use replicate, geographically distinct hybrid zones to narrow down those loci that are responding to selection
    corecore