113 research outputs found

    An interactive medical image segmentation system based on the optimal management of regions of interest using topological medical knowledge

    Get PDF
    This paper presents an original interactive system for efficient medical image segmentation in computer aided diagnosis. The main originality concerns the method used to manage, according to an a priori topological-based structural model, regions of interest (ROIs) within which computations can be constrained. The goal is then to avoid the processing of irrelevant image points, therefore improving and accelerating segmentations. In the case of a hierarchical modeling procedure, our ROI management method enables, for delineating a given medical structure, to optimally determine image points of interest by taking previously segmented structures into account. We propose a mathematical formulation of the method as well as a possible implementation within an interactive system. We also detail an experience report focussing on the segmentation of several abdominal structures from a CT image. It illustrates the behavior and the potential of our method

    Time-resolved PhotoEmission Spectroscopy on a Metal/Ferroelectric Heterostructure

    Full text link
    In thin film ferroelectric capacitor the chemical and electronic structure of the electrode/FE interface can play a crucial role in determining the kinetics of polarization switching. We investigate the electronic structure of a Pt/BaTiO3/SrTiO3:Nb capacitor using time-resolved photoemission spectroscopy. The chemical, electronic and depth sensitivity of core level photoemission is used to probe the transient response of different parts of the upper electrode/ferroelectric interface to voltage pulse induced polarization reversal. The linear response of the electronic structure agrees quantitatively with a simple RC circuit model. The non-linear response due to the polarization switch is demonstrated by the time-resolved response of the characteristic core levels of the electrode and the ferroelectric. Adjustment of the RC circuit model allows a first estimation of the Pt/BTO interface capacitance. The experiment shows the interface capacitance is at least 100 times higher than the bulk capacitance of the BTO film, in qualitative agreement with theoretical predictions from the literature.Comment: 7 pages, 10 figures. Submitted to Phys. Rev.

    Interface Electronic Structure in a Metal/Ferroelectric Heterostructure under Applied Bias

    Full text link
    The effective barrier height between an electrode and a ferroelectric (FE) depends on both macroscopic electrical properties and microscopic chemical and electronic structure. The behavior of a prototypical electrode/FE/electrode structure, Pt/BaTiO3/Nb-doped SrTiO3, under in-situ bias voltage is investigated using X-Ray Photoelectron Spectroscopy. The full band alignment is measured and is supported by transport measurements. Barrier heights depend on interface chemistry and on the FE polarization. A differential response of the core levels to applied bias as a function of the polarization state is observed, consistent with Callen charge variations near the interface.Comment: 9 pages, 8 figures. Submitted to Phys. Rev.

    Protein patterning by UV-induced photodegradation of poly(oligo(ethylene glycol) methacrylate) brushes

    Get PDF
    The UV photodegradation of protein-resistant poly(oligo(ethylene glycol) methacrylate) (POEGMA) bottle-brush films, grown on silicon oxide by surface-initiated atom radical transfer polymerization, was studied using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Exposure to light with a wavelength of 244 nm caused a loss of polyether units from the brush structure and the creation of aldehyde groups that could be derivatized with amines. An increase was measured in the coefficient of friction of the photodegraded polymer brush compared to the native brush, attributed to the creation of a heterogeneous surface film, leading to increased energy dissipation through film deformation and the creation of new polar functional groups at the surface. Exposure of the films through a photomask yielded sharp, well-defined patterns. Analysis of topographical images showed that physical removal of material occurred during exposure, at a rate of 1.35 nm J−1 cm2. Using fluorescence microscopy, the adsorption of labeled proteins onto the exposed surfaces was studied. It was found that protein strongly adsorbed to exposed areas, while the masked regions retained their protein resistance. Exposure of the film to UV light from a scanning near-field optical microscope yielded submicrometer-scale patterns. These data indicate that a simple, rapid, one-step photoconversion of the poly(OEGMA) brush occurs that transforms it from a highly protein-resistant material to one that adsorbs protein and can covalently bind amine-containing molecules and that this photoconversion can be spatially addressed with high spatial resolution

    Simultaneous computer-assisted assessment of mucosal and serosal perfusion in a model of segmental colonic ischemia

    Get PDF
    BACKGROUND: Fluorescence-based enhanced reality (FLER) enables the quantification of fluorescence signal dynamics, which can be superimposed onto real-time laparoscopic images by using a virtual perfusion cartogram. The current practice of perfusion assessment relies on visualizing the bowel serosa. The aim of this experimental study was to quantify potential differences in mucosal and serosal perfusion levels in an ischemic colon segment. METHODS: An ischemic colon segment was created in 12 pigs. Simultaneous quantitative mucosal and serosal fluorescence imaging was obtained via intravenous indocyanine green injection (0.2 mg/kg), using two near-infrared camera systems, and computer-assisted FLER analysis. Lactate levels were measured in capillary blood of the colonic wall at seven regions of interest (ROIs) as determined with FLER perfusion cartography: the ischemic zone (I), the proximal and distal vascularized areas (PV, DV), and the 50% perfusion threshold proximally and distally at the mucosal and serosal side (P50M, P50S, D50M, D50S). RESULTS: The mean ischemic zone as measured (mm) for the mucosal side was significantly larger than the serosal one (56.3 ± 21.3 vs. 40.8 ± 14.9, p = 0.001) with significantly lower lactate values at the mucosal ROIs. There was a significant weak inverse correlation between lactate and slope values for the defined ROIs (r = - 0.2452, p = 0.0246). CONCLUSIONS: Mucosal ischemic zones were larger than serosal zones. These results suggest that an assessment of bowel perfusion from the serosal side only can underestimate the extent of ischemia. Further studies are required to predict the optimal resection margin and anastomotic site

    Real-time navigation by fluorescence-based enhanced reality for precise estimation of future anastomotic site in digestive surgery.

    Get PDF
    Fluorescence-based enhanced reality (FLER) is a technique to evaluate intestinal perfusion based on the elaboration of the Indocyanine Green fluorescence signal. The aim of the study was to assess FLER's performances in evaluating perfusion in an animal model of long-lasting intestinal ischemia. An ischemic segment was created in 18 small bowel loops in 6 pigs. After 2 h (n = 6), 4 h (n = 6), and 6 h (n = 6), loops were evaluated clinically and by FLER to delineate five regions of interest (ROIs): ischemic zone (ROI 1), presumed viable margins (ROI 2a-2b), and vascularized areas (3a-3b). Capillary lactates were measured to compare clinical vs. FLER assessment. Basal (V 0 ) and maximal (V max) mitochondrial respiration rates were determined according to FLER. Lactates (mmol/L) at clinically identified resection lines were significantly higher when compared to those identified by FLER (2.43 ± 0.95 vs. 1.55 ± 0.33 p = 0.02) after 4 h of ischemia. Lactates at 2 h at ROI 1 were 5.45 ± 2.44 vs. 1.9 ± 0.6 (2a-2b; p < 0.0001) vs. 1.2 ± 0.3 (3a-3b; p < 0.0001). At 4 h, lactates were 4.36 ± 1.32 (ROI 1) vs. 1.83 ± 0.81 (2a-2b; p < 0.0001) vs. 1.35 ± 0.67 (3a-3b; p < 0.0001). At 6 h, lactates were 4.16 ± 2.55 vs. 1.8 ± 1.2 vs. 1.45 ± 0.83 at ROI 1 vs. 2a--2b (p = 0.013) vs. 3a-3b (p = 0.0035). Mean V 0 and V max (pmolO2/second/mg of tissue) were significantly impaired after 4 and 6 h at ROI 1 (V 0 (4h) = 34.83 ± 10.39; V max (4h) = 76.6 ± 29.09; V 0 (6h) = 44.1 ± 12.37 and V max (6h) = 116.1 ± 40.1) when compared to 2a--2b (V 0 (4h) = 67.1 ± 17.47 p = 0.00039; V max (4h) = 146.8 ± 55.47 p = 0.0054; V 0 (6h) = 63.9 ± 28.99 p = 0.03; V max (6h) = 167.2 ± 56.96 p = 0.01). V 0 and V max were significantly higher at 3a-3b. FLER may identify the future anastomotic site even after repetitive assessments and long-standing bowel ischemia

    Robotic microassembly and micromanipulation at FEMTO-ST

    No full text
    International audienceThis paper deals with a historical overview of Q1 Q2 8 9 the activities of the French FEMTO-ST institute in the 10 field of microrobotic manipulation and assembly. It firstly 11 shows tools developed for fine and coarse positioning: 12 4 DOF microgrippers, 2 DOF modules and smart sur13 faces. The paper then goes on the automation of tridimen14 sional microassembly of objects measuring between 10 and 15 400 microns. We are especially focusing on several princi16 ples. Closed loop control based on micro-vision has been 17 studied and applied on the fully automatic assembly of 18 several 400 microns objects. Force control has been also 19 analyzed and is proposed for optical Microsystems assem20 bly. At least, open loop trajectories of 40 microns objects 21 with a throughput of 1,800 unit per hour have been achieved. 22 Scientific and technological aspects and industrial relevance will be presented

    Wire edge dependent magnetic domain wall creep

    Get PDF
    open13While edge pinning is known to play an important role in sub-μm wires, we demonstrate that strong deviations from the universal creep law can occur in 1 to 20 μm wide wires. Magnetic imaging shows that edge pinning translates into a marked bending of domain walls at low drive and is found to depend on the wire fabrication process and aging. Edge pinning introduces a reduction of domain wall velocity with respect to full films which increasingly dominates the creep dynamics as the wire width decreases. We show that the deviations from the creep law can be described by a simple model including a counter magnetic field which links the width of the wire to the edge dependent pinning strength. This counter field defines a key nonuniversal contribution to creep motion in patterned structures.openHerrera Diez, L.; Jeudy, V.; Durin, G.; Casiraghi, A.; Liu, Y. T.; Voto, M.; Agnus, G.; Bouville, D.; Vila, L.; Langer, J.; Ocker, B.; Lopez-Diaz, L.; Ravelosona, D.Herrera Diez, L.; Jeudy, V.; Durin, G.; Casiraghi, A.; Liu, Y. T.; Voto, M.; Agnus, G.; Bouville, D.; Vila, L.; Langer, J.; Ocker, B.; Lopez-Diaz, L.; Ravelosona, D

    A step towards stereotactic navigation during pelvic surgery: 3D nerve topography

    Get PDF
    Background: Long-term morbidity after multimodal treatment for rectal cancer is suggested to be mainly made up by nerve-injury-related dysfunctions. Stereotactic navigation for rectal surgery was shown to be feasible and will be facilitated by highlighting structures at risk of iatrogenic damage. The aim of this study was to investigate the ability to make a 3D map of the pelvic nerves with magnetic resonance imaging (MRI). Methods: A systematic review was performed to identify a main positional reference for each pelvic nerve and plexus. The nerves were manually delineated in 20 volunteers who were scanned with a 3-T MRI. The nerve identifiability rate and the likelihood of nerve identification correctness were determined. Results: The analysis included 61 studies on pelvic nerve anatomy. A main positional reference was defined for each nerve. On MRI, the sacral nerves, the lumbosacral plexus, and the obturator nerve could be identified bilaterally in all volunteers. The sympathetic trunk could be identified in 19 of 20 volunteers bilaterally (95%). The superior hypogastric plexus, the hypogastric nerve, and the inferior hypogastric plexus could be identified bilaterally in 14 (70%), 16 (80%), and 14 (70%) of the 20 volunteers, respectively. The pudendal nerve could be identified in 17 (85%) volunteers on the right side and in 13 (65%) volunteers on the left side. The levator ani nerve could be identified in only a few volunteers. Except for the levator ani nerve, the radiologist and the anatomist agreed that the delineated nerve depicted the correct nerve in 100% of the cases. Conclusion: Pelvic nerves at risk of injury are usually visible on high-resolution MRI w
    corecore