47 research outputs found
Simulating infiltration processes into fractured and swelling soils as triggering factors of landslides
The influence of rainfall in triggering landslides is a widely discussed topic in scientific literature. The slope stability of fractured surface soils is often influenced by the soil suction. Rainfall, infiltrating into soil fractures, causes the decrease in soil suction and shear strength, which can trigger the collapse of surface soil horizons. Water flow through fractured soils can also be affected by soil swelling and by capillary barrier effects in the case of low permeable soil overlying a more permeable one. These conditions are rarely investigated by the existing models, especially from the point of view of rainfall triggering surface landslides. For this purpose, we have developed a dual-porosity model that simulates water flow through fractured swelling soils overlying a more permeable soil. The model has been applied to a soil profile consisting of a thin layer of fractured loamy soil above a coarse sand layer, in order to investigate the influence of different rainfall intensities on the infiltration process, and on the distribution of the pore pressure that affects slope stability. © Springer-Verlag Berlin Heidelberg 2013
Storm-water infiltration and focused recharge modeling with finite-volume two-dimensional Richards equation: application to an experimental rain garden
Rain gardens are infiltration systems that provide volume and water quality control, recharge enhancement, as well as landscape, ecological, and economic benefits. A model for application to rain gardens based on Richards equation coupled to a surface water balance was developed, using a two-dimensional finite-volume code. It allows for alternating upper boundary conditions, including ponding and overflow, and can simulate heterogeneous soil-layering or more complex geometries to estimate infiltration and recharge. The algorithm is conservative, and exhibits good performance compared to standard models for several test cases (less than 0.1% absolute mass balance error); simulations were also performed for an experimental rain garden and comparisons to collected data are presented. The model accurately simulated the matrix flow, soil water distribution, as well as deep percolation (potential recharge) for a natural rainfall event in the controlled experimental setup.
Read More: http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29HY.1943-7900.0000111?prevSearch=authors%3A%28Dussaillant%2C%29&searchHistoryKey
OpenSimRoot: widening the scope and application of root architectural models
Research Conducted and Rationale: OpenSimRoot is an open sourced, functional- structural plant model and mathematical description of root growth and function. We describe OpenSimRoot and its functionality to broaden the benefits of root modeling to the plant science community.
Description: OpenSimRoot is an extended version of SimRoot, established to simulate root system architecture, nutrient acquisition, and plant growth. OpenSimRoot has a plugin, modular infrastructure, coupling single plant and crop stands to soil nutrient, and water transport models. It estimates the value of root traits for water and nutrient acquisition in environments and plant species.
Key results and unique features: The flexible OpenSimRoot design allows upscaling from root anatomy to plant community to estimate 1) resource costs of developmental and anatomical traits, 2) trait synergisms, 3) (inter species) root competition. OpenSimRoot can model 3D images from MRI and X-ray CT of roots in soil. New modules include: 1) soil water dependent water uptake and xylem flow, 2) tiller formation, 3) evapotranspiration, 4) simultaneous simulation of mobile solutes, 5) mesh refinement, and 6) root growth plasticity.
Conclusion: OpenSimRoot integrates plant phenotypic data with environmental metadata to support experimental designs and gain mechanistic understanding at system scales
Recommended from our members
New features of version 3 of the HYDRUS (2D/3D) computer software package
The capabilities of the HYDRUS-1D and HYDRUS (2D/3D) software packages continuously expanded during the last two decades. Various new capabilities were added recently to both software packages, mostly by developing new standard add-on modules such as HPx, C-Ride, UnsatChem, Wetland, Fumigant, DualPerm, and Slope Stability. The new modules may be used to simulate flow and transport processes in one- and two-dimensional transport domains and are fully supported by the HYDRUS graphical user interface (GUI). Several nonstandard add-on modules, such as Overland, Isotope, and Centrifuge, have also been developed, but are not fully supported by the HYDRUS GUI. The objective of this manuscript is to describe several additional features of the upcoming Version 3 of HYDRUS (2D/3D), which was unveiled at a recent (March 2017) HYDRUS conference and workshop in Prague. The new features include a flexible reservoir boundary condition, expanded root growth features, and new graphical capabilities of the GUI. Mathematical descriptions of the new features are provided, as well as two examples illustrating applications of the reservoir boundary condition
Recommended from our members
Thematic Issue on HYDRUS Software Applications to Subsurface Fluid Flow and Contaminant Transport
An in-depth analysis of Markov-Chain Monte Carlo ensemble samplers for inverse vadose zone modeling
This study elucidates the behavior of Markov-Chains Monte Carlo ensemble samplers for vadose zone inverse modeling by performing an in-depth comparison of four algorithms that use Affine-Invariant (AI) moves or Differential Evolution (DE) strategies to approximate the target density. Two Rosenbrock toy distributions, and one synthetic and one actual case study focusing on the inverse estimation of soil hydraulic parameters using HYDRUS-1D, are used to compare samplers in different dimensions d. The analysis reveals that an ensemble with N=d+1 chains evolved using DE-based strategies converges to the wrong stationary posterior, while AI does not suffer from this issue but exhibits delayed convergence. DE-based samplers regain their ergodic properties when using N≥2d chains. Increasing the number of chains above this threshold has only minor effects on the samplers’ performance, while initializing the ensemble in a high-likelihood region facilitates its convergence. AI strategies exhibit shorter autocorrelation times in the 7d synthetic vadose zone scenario, while DE-based samplers outperform them when the number of soil parameters increases to 16 in the actual scenario. All evaluation metrics degrade as d increases, thus suggesting that sampling strategies based only on interpolation between chains tend to become inefficient when the bulk of the posterior lays in increasingly small portions of the parameters’ space
Recommended from our members
Coupling DSSAT and HYDRUS-1D for simulations of soil water dynamics in the soil-plant-atmosphere system
Accurate estimation of the soil water balance of the soil-plant-atmosphere system is key to determining the availability of water resources and their optimal management. Evapotranspiration and leaching are the main sinks of water from the system affecting soil water status and hence crop yield. The accuracy of soil water content and evapotranspiration simulations affects crop yield simulations as well. DSSAT is a suite of field-scale, process-based crop models to simulate crop growth and development. A "tipping bucket" water balance approach is currently used in DSSAT for soil hydrologic and water redistribution processes. By comparison, HYDRUS-1D is a hydrological model to simulate water flow in soils using numerical solutions of the Richards equation, but its approach to crop-related process modeling is rather limited. Both DSSAT and HYDRUS-1D have been widely used and tested in their separate areas of use. The objectives of our study were: (1) to couple HYDRUS-1D with DSSAT to simulate soil water dynamics, crop growth and yield, (2) to evaluate the coupled model using field experimental datasets distributed with DSSAT for different environments, and (3) to compare HYDRUS-1D simulations with those of the tipping bucket approach using the same datasets. Modularity in the software design of both DSSAT and HYDRUS-1D made it easy to couple the two models. The pairing provided the DSSAT interface an ability to use both the tipping bucket and HYDRUS-1D simulation approaches. The two approaches were evaluated in terms of their ability to estimate the soil water balance, especially soil water contents and evapotranspiration rates. Values of the d index for volumetric water contents were 0.9 and 0.8 for the original and coupled models, respectively. Comparisons of simulations for the pod mass for four soybean and four peanut treatments showed relatively high d index values for both models (0.94-0.99)
Recommended from our members
Can a change in cropping patterns produce water savings and social gains: A case study from the Fergana Valley, Central Asia
The study examines possible water savings by replacing alfalfa with winter wheat in the Fergana Valley, located upstream of the Syrdarya River in Central Asia. Agricultural reforms since the 1990s have promoted this change in cropping patterns in the Central Asian states to enhance food security and social benefits. The water use of alfalfa, winter wheat/fallow, and winter wheat/green gram (double cropping) systems is compared for high-deficit, low-deficit, and full irrigation scenarios using hydrological modeling with the HYDRUS-1D software package. Modeling results indicate that replacing alfalfa with winter wheat in the Fergana Valley released significant water resources, mainly by reducing productive crop transpiration when abandoning alfalfa in favor of alternative cropping systems. However, the winter wheat/fallow cropping system caused high evaporation losses from fallow land after harvesting of winter wheat. Double cropping (i.e., the cultivation of green gram as a short duration summer crop after winter wheat harvesting) reduced evaporation losses, enhanced crop output and hence food security, while generating water savings that make more water available for other productive uses. Beyond water savings, this paper also discusses the economic and social gains that double cropping produces for the public within a broader developmental context