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ABSTRACT

Source control is the fundamental principle behind sustainable management of stormwater. 

Rain gardens are an infiltration practice that provides volume and water quality control, 

recharge, and multiple landscape, ecological and economic potential benefits. The fulfillment 

of these objectives requires understanding their behavior during water input events as well as 

long term, and tools for their design. A model based on Richards equation coupled to a 

surface water balance was developed, using a 2D finite volume Fortran code which allows 

alternating upper boundary conditions, including ponding, which is not present in available 

2D Richards models. Also, the model (R2D) can simulate heterogeneous soil -layered or more 

complex geometries- to estimate infiltration and recharge. The algorithm is conservative, 

showing good performance for several cases (less than 0.1% error); being an advantage 

compared to most available finite difference and finite element methods. Performance 

comparisons to known models and to experimental data from a bioretention cell are presented. 

This experimental rain garden receives roof water to its surface depression planted with native 

species in an organic-rich root zone soil layer, underlain by a high conductivity lower layer 

that, while providing inter-event storage, percolates water readily. R2D simulated well the 

matrix flow, soil water distribution, as well as deep percolation (potential recharge) for a 

natural rainfall event in the controlled experimental lysimeter. R2D now validated is available 

for investigating different rain garden configurations, and also for benchmarking more 

operational models for bioretention cells or rain garden hydrologic design purposes.

Keywords: Richards equation; recharge; finite-volume; rain garden; bioretention; urban 

stormwater; lysimeter; TDR

1 INTRODUCTION

Presently, an important drive in urban stormwater management is to apply alternative 

approaches (BMPs) that provide multiple benefits: technical, economical, ecological, 

recreational, aesthetical, and others (Ferguson, 1990; Huhn & Stecker, 1997; Fischer et al., 

2003). There is concern that traditional stormwater practices have been unsuccessful in 

diminishing impacts on altered hydrology by the rapid increase of urban growth, specifically 

due to diminished groundwater recharge and increased pumping, that combined have lowered 

groundwater levels in cities, particularly in fast growing suburban areas (Alley et al., 2002).

Infiltration practices provide an attractive option, as they can be applied at the source of 

stormwater generation, can reduce runoff volume and therefore erosion and contaminant 

transport (Ferguson, 1990). They are particularly effective for dealing with small and medium 

rainfall events, which may account for most of annual volume (e.g. in Madison, Wisconsin, 

USA, 90% of the annual rainfall is  accounted for by events with intensities of 2.5 cm/h or 
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less, and in Santiago, Chile, 90% by events of 1.8 cm/h or less). Crucially, in particular for 

lower income countries, infiltration practices are a decentralized approach that can reduce the 

need for large stormwater structures downstream. Particularly, if infiltration is focused, it can 

enhance groundwater recharge, as in the case of rain gardens and bioretention areas. Rain 

gardens are low-cost to install, can be visibly pleasing, and foster social involvement, as well 

transfer maintenance to private owners, potentially decreasing costs and risk.

A rain garden is a vegetated depression with engineered soil (Figure 1) that receives 

stormwater from a much larger area impervious surface such a roof or a parking lot (1:10 to 

1:20 ratio). Plants, besides providing aesthetic and potentially ecological value, enhance soil 

bio-turbation, potentially maintaining or even increasing infiltration capacity in time via 

macropore formation. Soil layering includes a permeable organic root zone that enhances 

water retention for plant survival in dry periods, as well as trapping pollutants, and a 

permeable layer below that permits water storage between events for enhancing recharge.

For modeling the matrix flow of water in the unsaturated zone of the soil, the common state of 

the art is the use of Richards Equation and its solution (Richards 1931; Miller et al. 1998; van 

Dam & Feddes 2000, Celia et al. 1990; Kavetski et al. 2001, Miller et al. 2006), albeit with 

recent correction suggestions such as fractional derivatives (Pachepsky et al. 2003) and 

representative elementary volume considerations (Roth 2008).

The Richards Equation with a sink term follows from the combination of a soil water mass 

balance and Darcy-Buckingham’s law, (assuming one-phase incompressible flow through the 

soil matrix with no air resistance nor thermal effects), can be written in general as:

wSHhK
t

h
hC ))(()( (1)

where C(h) is the moisture capacity function; H(h,z) is the total head (matrix head, or 

capillary suction, h, plus gravitational head, z); t is time; K(h) is soil hydraulic conductivity; 

and Sw is a sink (usually plant transpiration). As seen, this is a nonlinear second order 

parabolic-type partial differential equation.

The rain garden is designed to pond and then overflow, so this particular physical behavior 

needs to be included in the soil surface boundary condition, which is still uncommon in 

readily available models. For example, two popular Richards Equation models, UNSAT-H 

(Fayer 2000) and HYDRUS (Simunek et al. 1998) lack this capability or is limited.

In past work, a 1D Richards equation model, was developed (RECHARGE) so as to study 

rain garden water budgets in the short and long term (Dussaillant 2002; Dussaillant et al. 

2004), as well as used to benchmark simpler, operational models for design purposes (e.g. 

Dussaillant et al. 2005b). One further step needed was to expand to a 2D model, to investigate 

more flexible garden configurations, for example terracing, which may bring added recharge 

augmenting performance, as well as landscaping secondary benefits.

However, 2D Richards equation based models are few (e.g. Simunek et al. 1999; Tocci et al. 

1998; Farthing et al. 2003; Lee et al. 2004), particularly those that can handle a surface water 

based coupled boundary condition and a layered soil, aspects which enhance numerical 

problems compared to the 1D case (Dussaillant 2002; Aravena 2006), making very fine 

spatial and/or temporal discretizations necessary for finite difference or finite element 
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schemes. Regarding the numerical method, we only found one using the conservative finite 

volume approach, that of Manzini & Ferraris (2004), but without the switching top BBCC -

combined with a surface water balance- plus unsteady rainfall and layered soil that was 

required for the rain garden situation.

Our general project goal is to study and model rain garden hydrological behavior to ultimately 

provide design criteria for their implementation in specific climate, soil and urban settings. 

This research specific objective was to develop a bi-dimensional numerical modeling tool to 

simulate different rain garden configurations. The approach included developing a finite-

volume model for simulations, based on Richards equation coupled with the rain garden 

surface water balance, and validated with literature cases and a rainfall event in an 

experimental lysimeter setup.

2  METHODS

A Richards-equation based finite volume model was developed, validated with literature 

results and compared with data gathered in our experimental rain garden lysimeter setup

(Aravena 2006).

In integral form, Richards equation (1) can be written in generalized form as:

0w

h
C h d K h H d S d

t
  (2)

where is volume; H is total hydraulic head, composed of h (matrix head) and z

(gravitational head); and t is time.

2.1 FINITE-VOLUME MODEL

The basic idea of a finite volume scheme is that the domain is divided using a grid of small 

control volumes where the PDE is integrated, obtaining conservative equations for mass, 

momentum and energy, both for the control volumes as well as domain borders (Versteeg & 

Malalasekera, 1995).

If a control volume, , with boundary conditions and normal unit vector, n̂ , the integral 

form of Richards 2D equation, using Green´s theorem, can be written in integral form as:

ˆ 0w

H
C d K H ds S d

t
n in ,x z ,  for  0t (3)

where x is horizontal position. Boundary conditions can be of the form:

borde

borde

K H q t

ó

H H t

if ,x z ,    for 0t (4)

where q is water flux.

Considering a second-order scheme,
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i ig d g (5)

where
ig is the value of the function evaluated in the centroid of the control volume, thus we 

obtain: 

ˆ 0
i

i i i wi i

i
f H

H
C K H S

t
n (6)

where:

f H K H H (7)

Note that the control volume terms are evaluated in the corresponding centroid, while the flux 

terms are calculated in the borders; therefore, the sum will have as many terms as the control 

volume has borders.

Using a Crank-Nicolson type averaging (Aravena 2006) for estimating the gradient between 

adjacent control volumes, in two dimensions, the hydraulic gradient is:

1
2

1 1

, 1, , 1,

,
1

n n n n

i j i j i j i jn

i j

H H H H
H

z z
(8a)

1
2

1 1

, , 1 , , 1

,
1

n n n n

i j i j i j i jn

i j

H H H H
H

x x
(8b)

where i is the horizontal position x (column) counter and j is the vertical position z (row) 

counter, from the bottom of the profile (z is vertical position measured upwards); and is the 

Crank-Nicholson scheme weight.

Using:

1
2

i

i
F H f H ds for i control surface i (9)

1
2

1
2

ˆ

i

i
F H K H H dsn (10)

And assuming that in the frontier of the control volume, 1
2

i
, hydraulic conductivity can be 

calculated with the arithmetic mean of the adjacent nodes:

1
2

1

2

i i

i

K K
K H K (11)

then,

1 1 1
2 2 2

i i i
F H K H (12)

And we can define the integral flux term, in time, across the control volume, as:
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11

2
1 1

2 2

1 n

n

t
n

i i
t

F F H dt
t

(13)

where , , ,H H t x y z

Also, in the control surface it can be assumed that 1 1 1 1
2 2 2 2

, , ,
n

ni i i i
H H x y z t ; then, 

1
2

n

i
H H

And thus finally:

1 1 1 1
2 2 2 2

1 1 1

2 2 2
n n n

i i i i
F K H (14)

Therefore:

1 1 1 1
2 2 2 2

1

, , , , ,, , , ,

n n n n n n n

i j i j i j i j wi ji j i j i j i j

i

t
C H C H F F F F t S

c
(15)

Expanding terms presented above, and grouping according to the notation P: (j, i); N: (j+1, i); 

S: (j-1, i); E: (j, i+1); and W:(j, i-1) . Then the linear system is of the form:

1 1 1 1 1

, , 1, 1, , 1 , 1

n n n n n

j i P j i N j i S j i E j i W j i

t t
C a H a H a H a H a H

x z x z

, , 1 ,

n n

j i j i w j i

t
C H b t S

x z
(16)

with:

1 1 1 1
2 2 2 2

, , , ,

2 2 2 2

j i j i j i j i

P

K z K z K x K x
a

x x z z
(17a)

1
2
,

2

j i

N

K x
a

z
(17b)

1
2
,

2

j i

S

K x
a

z
(17c)

1
2

,

2

j i

E

K z
a

x
(17d)

1
2

,

2

j i

W

K z
a

x
(17e)
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1 , ,

, 1 , 1 1, 1,

__

1

1

n n

i j N S E W i j

n n n n

N i j S i j E i j W i j

w

b C a a a a H

a H a H a H a H

S x z

(17f)

1
2

, 1,

, 2

j i j i

j i

K K
K (17g)

1
2

, , 1

,
2

j i j i

j i

K K
K (17h)

Soil water properties are approximated with van Genuchten and Mualem functions (van 

Genuchten, 1980; Mualem 1976) which, assuming no hysteresis, can be expressed as:

resmn

ressat

h

h

1

)( , (18)

2/

2
1

1

11

)(
mn

mnn

sat

h

hh

KhK , (19)

mn

m
n

ressat

h

h

m

m

dh

d
hC

1

11

1
)(

1

, (20)

where sat is the saturation volumetric water content, res is the residual water content, Ksat is 

the saturated hydraulic conductivity, and m and n are the van Genuchten parameters (where 

m=n+1).

In R2D the soil surface upper boundary (Aravena 2006) can fluctuate between the following 

conditions:

(i) Dirichlet: when water begins to pond at the soil surface i.e. variable head in time,

iJ

k

s

k

iJ zhH ,, (21)

where k

sh is the ponded depth at time k and ,J iz is the height of the soil surface 

node,  respectively

(ii) Neumann: this condition occurs before ponding and after pond drainage i.e. flux 

is equal to water input to the soil surface

1
1

k

o

h
q K

z
(22)
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1 1

, 1,1 1

1
,

2

k k

J i J ik k

o
J i

H H
q K

z
(23)

where in

k qrq 1

0 , is known from the current rainfall rate, r, and surface water 

inflow qin. Therefore,
1

1 1

, 1, 1

1
,

2

k
k k o
J i J i k

J i

q
H H z

K
(24)

Note that the flux equation is highly nonlinear and needs to be solved iteratively. 

The bisection method was used to solve (17) in each upper node of the domain, 

given the discontinuities in the derivative of the van Genuchten soil equations, 

which prevented the use of other faster methods e.g. Newton (Aravena 2006).

The top boundary condition is given by the coupling of Richards equation to a simple surface 

water balance of the type:

RUNOFFONINFILTRATIin
s QQqr

dt

dh
A , (25)

where A is the infiltrating area, hs is the surface water ponded depth, QINFILTRATION is the 

infiltrating flux into the soil (estimated as the surface node fluxes from Richards equation 

solution in the previous iteration) and QRUNOFF is the overspill from the infiltrating depression

(any ponding water that exceeds the depression storage hd). We assume that rain and runon 

are uniformly distributed over the infiltrating area (Dussaillant at al. 2004).

For the lower boundary condition, the user can select from Dirichlet, flux and free drainage 

(unit gradient); the latter was used herein.

Linearizing using a Picard type iteration (Celia et al. 1990), results in a penta-diagonal system 

which is solved using a known scheme for such systems, the preconditioned bi-conjugate 

gradient method (Numerical Recipes, 1992; Aravena 2006).

Thus, in our model R2D, the Richards equation is coupled with surface water balance as top 

boundary condition, is conservative, bi-dimensional, and can model conditions as non-

homogeneous water input and surface irregularities e.g. terracing.

2.2 EXPERIMENTAL RAIN GARDEN

A rain garden inside a lysimeter experimental facility was installed and connected to the 116 

m
2

roof of the Hydraulic and Environmental Engineering Dept. at the P. Universidad Católica 

San Joaquín campus. The lysimeter is an impermeable structure built 2.1 m deep, 2 m wide 

and 3 m long (6 m
2
), and divided in 2 sections: 60 cm of transparent acrylic walls in the top, 

and 1.5 m deep concrete walls. The soil has two layers: 1.5 m of sand in the bottom and 50 

cm of a mixture of sand (50%) and compost (50%) for root zone upper soil. To minimize 

preferential flow between the soil and the lysimeter walls, clay rings were installed to redirect 

flow towards the interior of the soil (Dussaillant et al. 2005a). There is 10 cm deep surface 

depression storage in the acrylic section.

Native plant species were planted in 2004. Sensors installed include Time Domain 

Reflectometry (TDR) probes in vertical profiles for moisture (Figure 2), pressure transducers

for surface flow heads, a triangular weir and transducer for water inflow from roof, and a 
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tipping bucket for lysimeter bottom drainage. Soil hydraulic properties were measured by 

permeameters, tensioinfiltrometer and pressure plates. More detailed information of the 

lysimeter setup can be found in Dussaillant et al. (2005a,b) and Aravena (2006).

3 RESULTS AND DISCUSSION

The R2D model was validated with both literature data and experimental data from the

lysimeter setup in Santiago, Chile.

3.1 MODEL VALIDATION WITH LITERATURE DATA

As a first step, and following the approach we took in a previous 1D model (Dussaillant et al. 

2004; Dussaillant et al. 2005a), we validated our 2D Richards model with literature cases that 

would be similar to situations a rain garden system would encounter (Aravena 2006).

First, R2D was applied with a sharp gradient given by a sudden increase in hydraulic head at 

the soil surface, given by Celia et al. (1990), for a soil with characteristics given in Table 1. 

The soil column boundary conditions are Dirichlet type: htop = -75 cm; hbottom = -1000 cm. And 

the initial condition of h = -1000 cm in the whole column. For the base case of a hundred 

node discretization in space, and t = 10 s, for a simulation tome of 24 hours, R2D gave good 

results compared to Celia et al. (1990) and a comparison with Hydrus (Simunek et al. 1999), 

as shown in Figure 3a. Minor differences can be attributed to the different methods: finite 

differences in the case of Celia et al. (1990), and finite elements in the case of Hydrus, as 

opposed to R2D’s finite volume approach.

Second, since rain garden soil is layered, we followed the Pan & Wierenga (1995) layered soil 

case, with two types of Berino soil, a top sandy layer (0 to 60 cm depth), an intermediate

clayey layer (between 60 and 90 cm depth) and a bottom sandy layer (90 to 100 cm depth), 

under a constant flux upper boundary condition of -11.25 cm htopq and a no flow bottom 

boundary condition. Soil van Genuchten parameters are summarized in Table 2. The soil 

initial condition is h = -1000 cm in the whole column. For the base case of a hundred node 

discretization in space, and t = 0.001 h, for a simulation tome of 5 hours, R2D gave good 

results compared to Pan & Wierenga (1990) and a comparison with Hydrus (Figure 3b), again 

with good agreement, although R2D gave better results than Hydrus due to lower mass 

balance errors (see below, and Aravena 2006). 

Finally, we successfully repeated the Celia et al. (1990) classic case but using a 2D flux 

situation (Figure 3c) just for illustration of the bi-dimensional case.

In all validation runs, R2D mass balance errors were substantially lower (< 0.1%) than the 

errors by using a commercially available software package, HYDRUS-2D (Figure 4).

3.2 MODEL VALIDATION WITH EXPERIMENTAL LYSIMETER DATA

Several controlled rainfall experimental runs were performed in the lysimeter, which R2D 

could simulate very well without calibration (results not shown). We also had the opportunity 

of a natural rain event in October 2006, to validate R2D for a controlled yet more real 

situation. Figure 5 presents the hyetograph of the event; using the period from 15:35 October 

12
th

till 23:15 of the following day: 59.3 mm total direct precipitation; i.e. almost 21 times this 

amount is what the rain garden received given the roof-garden area ratio).

The event was simulated with R2D, given an approximate linearization of the initial soil 
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moisture condition (shown in Figure 5). Setup parameters are summarized in Table 3.

Figure 5 shows that the R2D simulation did rather well, for moisture contents as measured by 

TDRs, as well as bottom drainage (Aravena 2006), which is a relevant performance variable 

for rain gardens, since maximizing potential recharge is one of the key benefits of these 

practices.

4  CONCLUSIONS

A bi-dimensional, finite-volume, Richards equation based model with coupled top boundary 

condition was developed successfully (R2D; Aravena 2006), that allows for representing rain 

garden short term water fluxes (and long term water balance). R2D can model heterogeneous 

soils and surfaces, as well as alternating boundary conditions and non-homogeneous water 

inputs. Its conservative algorithm has very low mass balance errors – an improvement versus 

other models available, as shown with the validation runs performed for cases of interest 

given the bioretention cell (rain garden) configuration, of high soil surface head gradients, and 

layered soils.

R2D was successfully compared to a lysimeter controlled experiment with a natural rainfall 

event, without calibrating soil hydraulic parameters. The model represented temporal 

variability satisfactorily, and approximated well the soil water content dynamics for the upper 

root zone organic layer as well as the bottom sandy storage zone (also for controlled water 

input experiments, not shown here). More importantly for our purposes, R2D reproduced rain 

garden deep percolation (potential recharge) well for the test case, and the tests with natural 

rains will be continued, once the La Niña current dry spell is over in Chile.

Ongoing work with R2D includes: numerical simulations for different rain garden 

configurations e.g. terracing; benchmark operational models based on Green-Ampt equation 

(e.g. Dussaillant et al. 2005b) to our 1D (Dussaillant et al. 2004) or 2D (present paper) 

Richards-based models; and to work on model modifications to include other processes e.g. 

macropore flows.

We plan to develop design curves as a function of different climates and soils (Dussaillant et 

al. 2005b). A practical next step is to construct and monitor rain gardens in urbanizations 

across Chile. More generally, it is deemed necessary to upscale the analysis to development 

and watershed scale, to include drainage and spatial considerations, and verify effective 

impact on basin recharge, for which different modeling strategies may be necessary.
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Notation

The following symbols are used in this paper:

A = infiltrating area 

C(h) = soil moisture capacity function ( / h)

h = suction head 

hd = maximum depression depth

hs = surface ponding depth

d = surface water ponded depth 

F = integral flux term

ig = value of the function evaluated in the centroid of the control volume i

H = total head (H=h+z)

i,j = spatial counters

k = temporal counter

K(h) = unsaturated hydraulic conductivity

Ksat = saturated hydraulic conductivity 

Kss = saturated hydraulic conductivity of the lower subsoil

m, n = van Genuchten parameters

q = water flux

qin = runon input of water to infiltrating area

QINFILTRATION = infiltration of water into soil

QRUNOFF = runoff as overspill from infiltrating area

r = direct rainfall input to infiltrating area

Sw = soil moisture sink (plant transpiration rate)

t = time 

z = vertical position 

= van Genuchten parameter

= control volume
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= boundary conditions for the control volume 

= weight for the Crank-Nicolson scheme

= soil volumetric moisture content 

res = residual water content 

sat = saturation water content 

= volume

FIGURE CAPTIONS (FIGURES ATTACHED AS TIF FILES):

Figure 1: Conceptual diagram of a Rain Garden and associated water fluxes

Figure 2: Experimental rain garden, installed inside a lysimeter configuration: a) general view 

and plant growth; b) setup scheme for profile of TDR sensors

Figure 3: Validation runs for R2D: a) Celia et al. 1990 (pressure); b) Pan & Wierenga 1995 

layered soil (water content); c) Celia et al. 1990 modified to a 2D flux case (pressure).

Figure 4: Mass balance errors of R2D compared with HYDRUS for different bottom 

boundary conditions: a) no flux; b) constant flux; c) free drainage.

Figure 5: Natural rain event on the experimental rain garden, comparison of data versus R2D 

model (data in circles, model simulations in thin continuous line): rainfall event and initial

soil moisture profile (top); two TDR location data versus R2D model results (middle, left for 

a root zone node, right for a storage zone node); lysimeter drainage flux and cumulative 

volume measured vs. modeled (bottom).
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Table 1: van Genuchten soil parameters for the Celia et al (1990) case

Parameters New Mexico Soil

s
0.368

r
0.102

1

v
cm 0.0355

n 2.00
1

s
K cm s 0.00922

Source: (Celia et al., 1990)

Table 1

Click here to download Table: R2Dtable1.doc

http://www.editorialmanager.com/jrnhyeng/download.aspx?id=67730&guid=f1e3926a-493f-408f-b37b-ec1d8771770d&scheme=1
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Table 2: van Genuchten soil parameters for the Berino type soil, Pan & Wierenga (1995) case

Parameters Berino sand Berino clay

s
0.3658 0.4686

r
0.0286 0.1060

1

v
cm 0.0280 0.0104

n 2.2390 1.3954
1

s
K cm h 22.54 0.5458

Source: (Pan y Wierenga, 1995)

Table 2

Click here to download Table: R2Dtable2.doc

http://www.editorialmanager.com/jrnhyeng/download.aspx?id=67731&guid=f8c1f2e6-f267-4ee1-8384-ea7eef719651&scheme=1
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Table 3: Experimental rain garden soil hydraulic parameters

Parameters Bottom sand Upper sand & compost mix

s 0.3623 0.5363 

r 0.0383 0.2457 

1

v
cm 0.3571 0.2419 

n 2.5621 2.1165 
1

s
K cm h 90.47 36.04 

Source: (Aravena, 2006)

Table 3

Click here to download Table: R2Dtable3.doc

http://www.editorialmanager.com/jrnhyeng/download.aspx?id=67732&guid=6fd4323f-97e0-45ea-8b98-ab6ba4c6f0af&scheme=1
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