21 research outputs found

    Neutronographic Residual Stress Analysis for Materials With Depth Gradients of the Strain Free Lattice Parameter d0{{{d}}}_{0} for the Example of a Case-Hardened Steel 20MnCr5

    Get PDF
    In the present work, ring-shaped samples made from steel 20MnCr5 were low-pressure carburized (LPC) and subsequently hardened by gas quenching (case-hardened). This results in a near-surface gradient in chemical composition, microstructure- and hardness distribution, as well as a three-dimensional residual stress (RS) distribution, which was investigated by neutron diffraction. Near-surface RSs in the ferrite-/martensite- and austenite phase are additionally determined by X-ray diffraction. It is shown that the chemical gradient has an influence on the chosen d0{{{d}}}_{0} strategy and how such a reference sample should be extracted. If near-surface RS values are to be determined by neutron diffraction, the pseudo-strain effect must be taken into account. For this purpose, a suitable approach using the ‘‘open source’’ software SIMRES and STRESSFIT is also presented. By combining neutron and X-ray diffraction data, a complete RS distribution over the whole sample can be obtained

    General formula for determination of cross-section from measured SANS intensities

    Full text link

    BEER - The Beamline for European Materials Engineering Research at the ESS

    Get PDF
    The Beamline for European Materials Engineering Research (BEER) will be built at the European Spallation Source (ESS). The diffractometer utilizes the high brilliance of the long-pulse neutron source and offers high instrument flexibility. It includes a novel chopper technique that extracts several short pulses out of the long pulse, leading to substantial intensity gain of up to an order of magnitude compared to pulse shaping methods for materials with high crystal symmetry. This intensity gain is achieved without compromising resolution. Materials of lower crystal symmetry or multi-phase materials will be investigated by additional pulse shaping methods. The different chopper set-ups and advanced beam extracting techniques offer an extremely broad intensity/resolution range. Furthermore, BEER offers an option of simultaneous SANS or imaging measurements without compromising diffraction investigations. This flexibility opens up new possibilities for in-situ experiments studying materials processing and performance under operation conditions. To fulfil this task, advanced sample environments, dedicated to thermo-mechanical processing, are foreseen

    The instrument suite of the European Spallation Source

    Get PDF
    An overview is provided of the 15 neutron beam instruments making up the initial instrument suite of the European Spallation Source (ESS), and being made available to the neutron user community. The ESS neutron source consists of a high-power accelerator and target station, providing a unique long-pulse time structure of slow neutrons. The design considerations behind the time structure, moderator geometry and instrument layout are presented. The 15-instrument suite consists of two small-angle instruments, two reflectometers, an imaging beamline, two single-crystal diffractometers; one for macromolecular crystallography and one for magnetism, two powder diffractometers, and an engineering diffractometer, as well as an array of five inelastic instruments comprising two chopper spectrometers, an inverse-geometry single-crystal excitations spectrometer, an instrument for vibrational spectroscopy and a high-resolution backscattering spectrometer. The conceptual design, performance and scientific drivers of each of these instruments are described. All of the instruments are designed to provide breakthrough new scientific capability, not currently available at existing facilities, building on the inherent strengths of the ESS long-pulse neutron source of high flux, flexible resolution and large bandwidth. Each of them is predicted to provide world-leading performance at an accelerator power of 2 MW. This technical capability translates into a very broad range of scientific capabilities. The composition of the instrument suite has been chosen to maximise the breadth and depth of the scientific impact o

    Wave Vector Difference of Magnetic Bragg Reflections and Low Energy Magnetic Excitations in Charge-stripe Ordered La2NiO4.11

    Get PDF
    We report on the magnetism of charge-stripe ordered La2NiO4.11±0.01 by neutron scattering and μSR. On going towards zero energy transfer there is an observed wave vector offset in the centring of the magnetic excitations and magnetic Bragg reflections, meaning the excitations cannot be described as Goldstone modes of the magnetic order. Weak transverse field μSR measurements determine the magnetically order volume fraction is 87% from the two stripe twins, and the temperature evolution of the magnetic excitations is consistent with the low energy excitations coming from the magnetically ordered volume of the material. We will discuss how these results contrast with the proposed origin of a similar wave vector offset recently observed in a La-based cuprate, and possible origins of this effect in La2NiO4.11

    Neutron diffraction studies of a fully asymmetric diffraction geometry of a bent perfect crystal with the output beam compression

    No full text
    In this paper studies of neutron diffraction properties of the double crystal (+n,-m) setting of a bent perfect crystal Si(311) in the fully asymmetric diffraction geometry with the output beam compression and the bent perfect crystal Si(220) in a symmetric diffraction geometry, are presented. The properties of the (+n,-m) setting were studied for different curvatures of the individual crystal slabs. It has been found that after a beam condensation this fully asymmetric diffraction geometry can provide a monochromatic beam of a small width and of a practical use

    Neutron optics concept for the materials engineering diffractometer at the ESS

    No full text
    The Beamline for European Materials Engineering Research (BEER) has been recently proposed to be built at the European Spallation Source (ESS). The presented concept of neutron delivery optics for this instrument addresses the problems of bi-spectral beam extraction from a small moderator, optimization of neutron guides profile for long-range neutron transport and focusing at the sample under various constraints. They include free space before and after the guides, a narrow guide section with gaps for choppers, closing of direct line of sight and cost reduction by optimization of the guides cross-section and coating. A system of slits and exchangeable focusing optics is proposed in order to match various wavelength resolution options provided by the pulse shaping and modulation choppers, which permits to efficiently trade resolution for intensity in a wide range. Simulated performance characteristics such as brilliance transfer ratio are complemented by the analysis of the histories of "useful" neutrons obtained by back tracing neutrons hitting the sample, which helps to optimize some of the neutron guide parameters such as supermirror coating

    Small angle neutron scattering on an absolute intensity scale and the internal surface of diatom frustules from three species of differing morphologies

    No full text
    The internal nanostructure of the diatoms Cyclotella meneghiniana, Seminavis robusta and Achnanthes subsessilis was investigated using small angle neutron scattering (SANS) to examine thin biosilica samples, consisting of isotropic (powder) from their isolated cell walls. The interpretation of SANS data was assisted by several other measurements. The N-2 adsorption, interpreted within the Branuer-Emmet-Teller isotherm, yielded the specific surface area of the material. Fourier transform infrared (FTIR) and Raman spectroscopy indicates that the isolated material is amorphous silica with small amounts of organic cell wall materials acting as a filling material between the silica particles. A two-phase (air and amorphous silica) model was used to interpret small angle neutron scattering data. After correction for instrumental resolution, the measurements on two SANS instruments covered an extended range of scattering vectors 0.0011 nm(-1) < q < 5.6 nm(-1), giving an almost continuous SANS curve over a range of scattering vectors, q, on an absolute scale of intensity for each sample. Each of the samples gave a characteristic scattering curve where log (intensity) versus log (q) has a -4 dependence, with other features superimposed. In the high-q regime, departure from this behaviour was observed at a length-scales equivalent to the proposed unitary silica particle. The limiting Porod scattering law was used to determine the specific area per unit of volume of each sample illuminated by the neutron beam. The Porod behaviour, and divergence from this behaviour, is discussed in terms of various structural features and the proposed mechanisms for the bio-assembly of unitary silica particles in frustules. © 2013, Springer
    corecore