Neutronographic Residual Stress Analysis for Materials With Depth Gradients of the Strain Free Lattice Parameter d0 for the Example of a Case-Hardened Steel 20MnCr5
In the present work, ring-shaped samples made from steel 20MnCr5 were low-pressure carburized (LPC) and subsequently hardened by gas quenching (case-hardened). This results in a near-surface gradient in chemical composition, microstructure- and hardness distribution, as well as a three-dimensional residual stress (RS) distribution, which was investigated by neutron diffraction. Near-surface RSs in the ferrite-/martensite- and austenite phase are additionally determined by X-ray diffraction. It is shown that the chemical gradient has an influence on the chosen d0 strategy and how such a reference sample should be extracted. If near-surface RS values are to be determined by neutron diffraction, the pseudo-strain effect must be taken into account. For this purpose, a suitable approach using the ‘‘open source’’ software SIMRES and STRESSFIT is also presented. By combining neutron and X-ray diffraction data, a complete RS distribution over the whole sample can be obtained