43 research outputs found
Galactic Bulges, spinning black holes and star forming galaxies in their cosmological context: insights from a semi-analytical perspective
Durante las últimas décadas, los astrofísicos han desarrollado una teoría sobre cómo se forman y evolucionan las galaxias. A pesar de ser exitosa en muchos aspectos, todavía tiene ciertas limitaciones que trabajos teóricos y observacionales están tratando de resolver. En esta tesis, contribuimos con estos trabajos teóricos abordando tres temas diferentes: bulbos galácticos, agujeros negros supermasivos y el desarrollo de catálogos simulados para la nueva generación de cartografiados de banda estrecha. Hemos abordado todos estos temas utilizando el modelo semianalítico L-Galaxies . A grandes rasgos, los modelos semianalíticos consisten en seguir la evolución de la componente bariónica del Universo utilizando aproximaciones analíticas aplicadas a “árboles” de fusiones de materia oscura. L-Galaxies es uno de los modelos más avanzados de la literatura, cuya capacidad para predecir las propiedades correctas de las galaxias en diferentes tiempos cosmológicos ha sido probada durante la última década en muchos trabajos. Una de las principales ventajas de L-Galaxies es la capacidad de se ejecutado en los árboles de fusiones de materia oscura extraídos de las simulaciones Millennium cuyas diferencias en tamaños de caja y resolución en masa de materia oscura ofrecen la posibilidad de explorar los procesos físicos experimentados por la las galaxias en una amplia variedad de escalas y entornos. En la primera parte de la tesis, abordamos la formación de bulbos galácticos con especial énfasis en la población de pseudobulbos, cuya evolución en un universo jerárquico no ha sido del todo explorada. Concretamente, estudiamos su proceso de formación y caracterizamos las propiedades de sus galaxias anfitrionas a diferentes tiempos cosmológicos. Dentro del marco que nos proporciona L-Galaxies , las galaxias son capaces de desarrollar un bulbo a través de fusiones con otras galaxias e inestabilidades de disco. Suponiendo que los pseudobulbos solo pueden formarse y crecer a través de una evolución secular, hemos modificado el tratamiento de las inestabilidades del disco de L-Galaxies asumiendo que solo los eventos de inestabilidad esencadenados por procesos seculares conducen a estructuras de barra duraderas que finalmente forman y desarrollan pseudobulbos. Hemos aplicado este escenario en L-Galaxies ejecutado sobre los árboles de fusiones de Millennium y Millennium II. Los resultados del modelo están en concordancia con las observaciones, mostrando que los pseudobulbos en el universo local son estructuras pequeñas ( 0:5 kpc) alojadas en galaxias similares a la Vía Láctea. Estos resultados son alentadores y respaldan nuestra principal suposición subyacente de que la estructura de pseudobulbo se forma principalmente a través de una evolución secular. Hemos ampliado nuestro análisis de pseudobulbos estudiando el comportamiento del criterio de inestabilidad de disco utilizada por L-Galaxies cuando es aplicada a una muestra de galaxia con y sin barra extraída de la simulación hidrodinámica cosmológica TNG100, actualmente una de las simulaciones más completas disponible. A pesar de encontrar una correlación entre las predicciones del criterio analítico y el (no) ensamblaje real de las galaxias con (no) barra, hemos detectado casos en los que el criterio analítico falla, ya sea afirmando estabilidad del disco para galaxias barradas o inestabilidad del disco para las galaxias sin barra. Por ello, hemos propuesto una condición nueva adicional para ser combinada con el criterio de L-Galaxies . Esta combinación mejora la detectabilidad de barras y reduce la contaminación de falsas galaxias barradas. La segunda parte de la tesis explora el ensamblaje en masas y la evolución del espín de los agujeros negros supermasivos a lo largo del tiempo cosmológico. Para ello, hemos actualizado el modelo L-Galaxies , incluyendo nuevos procesos físicos. Hemos asumido que el crecimiento de los agujeros negros se desencadena principalmente a través de la acumulación de gas frío después de fusiones de galaxias o inestabilidades de disco. Este crecimiento tiene lugar a través de una etapa de acrecimiento rápido seguida de un una lenta. Durante estas fases, la evolución del espín del agujero negro es calculada usando de las propiedades morfológicas del bulbo en el que reside. Las predicciones del modelo muestran una buena compatibilidad con los resultados observacionales como la función de masa de los agujeros negros, la distribución de sus valores de espín, la relación entre la masa del bulbo y la del agujero negro y las funciones de luminosidad. Una de las principales novedades de esta tesis ha sido utilizar el modelo explicado anteriormente para explorar la formación y evolución de la población de agujeros negros errantes, es decir, una población que se encuentra fuera de las galaxias en órbitas cerradas dentro de los subhalos de materia oscura. Hemos descubierto que la formación de este tipo de agujeros negros errantes deja una huella en la co-evolución entre el agujero negro y la galaxia anfitriona, pudiendo ser detectada por los estudios de galaxias actuales y futuros.Finalmente, la tercera parte de la tesis aborda el desarrollo de catálogos simulados especialmente diseñados para la nueva generación de cartografiados fotométricos de banda estrecha. Con este fin, hemos incluido la construcción de un cono de luz dentro de L-Galaxies incorporando en la fotometría de las galaxias simuladas el efecto de líneas de emisión producidas en regiones de formación estelar. Esto último ha asegurado la capacidad de los catálogos para predecir correctamente la fotometría de galaxias en filtros de banda estrecha. Para determinar el flujo exacto en estas líneas hemos utilizado un modelo de emisión nebular y de atenuación por el polvo capaz de predecir el flujo emitido por 9 líneas diferentes: Ly, H , H , [OII], [OIII], [NeIII], [OI], [NII] y [SII]. La validación de nuestro cono de luz se ha realizado comparando con diversas observaciones el número de galaxias detectado en diferentes filtros, la distribución angular de galaxias y las funciones de luminosidad de las líneas H , H , [OII] y[OIII]5007. Hemos utilizado todos estos procedimientos para generar catálogos especialmente diseñados para J-PLUS, un cartografiado fotométrico de galaxias que presenta una gran cantidad de filtros de banda estrecha. Al analizar estos catálogos hemos demostrado la capacidad del cartografiado para identificar correctamente la población de galaxias con líneas de emisión a diferentes tiempos cosmológicos.Como resumimos anteriormente, en esta tesis hemos abordado varios aspectos relacionados con la formación de galaxias, tratando de unir enfoques teóricos y observacionales. Sin duda alguna, el avance de los modelos teóricos combinado con los datos de experimentos futuros ayudará a construir una imagen más detallada de cómo se forman y evolucionan las estructuras en nuestro Universo.During the last decades, astrophysicists have developed a theory about how galaxies form and evolve within the Lambda-CDM cosmological framework. Despite being successful in many aspects, this general picutre has still some missing pieces that observational and theoretical works are trying to put all together. In this thesis, we try to answer to some open problems by addressing three different topics: galactic bulges, supermassive black holes and the development of mocks for the new generation of multi-narrow band surveys. We have tackled all these subjects by using the L-Galaxies semi-analytical model (SAM). Roughly, SAMs consist of dark matter merger trees populated with galaxies through analytical recipes. L-Galaxies is one of the state-of-the-art models whose capability to predict the correct galaxy properties at different redshifts has been proven during the last decade in many works. One of the main advantages of L-Galaxies is its flexibility to be run on the dark matter merger trees of the Millennium suite of simulations whose different box sizes and dark matter mass resolution offer the capability to explore different physical processes undergone by galaxies over a wide range of scales and environments. In the first part of the thesis, we address the cosmological build-up of galactic bulges with special focus on pseudobulges, whose cosmological evolution in a Lambda-CDM Universe has not been fully explored yet. In particular, we study their formation process and characterize the properties of their host galaxies at different redshifts. Within the L-Galaxies framework, galaxies are allowed to develop a bulge component via mergers and disk instabilities (DIs). Under the hypothesis that pseudobulges can only form and grow via secular evolution, we have modified the treatment of galaxy DIs. In detail, we assumed that only secular DI events lead to the development and growth of pseudobulges through the formation of long-lasting bar structures. We have applied this pseudobulge formation scenario to L-Galaxies, run on top of the Millennium and Millennium II dark matter merger trees. The outcomes of the model are in agreement with observations, showing that z=0 pseudobulges are small structures ~0.5 [kpc] hosted in main-sequence Milky Way-type galaxies. These results give support to our main underlying assumption that pseudobulge structure mainly form via secular evolution. We have extended our analysis of pseudobulge structures studying the performance of the DI criterion used by L-Galaxies when it is applied on a barred and unbarred galaxy sample of the cosmological hydrodynamical simulation TNG100. Despite finding a correlation between the analytical criteria predictions and the actual bar assembly (non-assembly) shown in the barred (unbarred) galaxies, we have detected cases where the analytical criterion fails, either claiming disk stability for barred galaxies or disk instability for the stable unbarred disks. We have proposed a new extra condition whose combination with the L-Galaxies criterion improves the detectability of bar structures and reduces both the contamination of fake barred galaxies and the number of undetected bar formation events. The second part of the thesis explores the mass assembly and spin evolution of supermassive black holes (BHs) across cosmic time. For this objective, we have updated L-Galaxies with new physical prescriptions. We have assumed that BH-mass assembly is mainly triggered by gas accretion after galaxy mergers or disk instabilities, and it takes place through a stage of rapid growth followed by a regime of slow accretion rates. During these phases, the BH spin evolution is followed by linking it with the morphological properties of the hosting bulge. The model predictions display a good consistency with some local observables, such as the black hole mass function, spin values distribution, BH-bulge mass relation and quasar luminosity functions. One of the main novelties of this thesis has been to use the BH model previously explained for exploring the formation and evolution of the wandering black hole population, i.e the population of BH outside of galaxies in bound orbits within the dark matter subhalos. We have found that the formation of these type of wandering black holes leave an imprint in the co-evolution between the black hole and the host galaxy which can be detected by current and future galaxy surveys. Finally, the third part of the thesis tackles the construction of mocks specially designed for the new generation of narrow-bands surveys. For this, we have inserted the lightcone assembly inside L-Galaxies, including in the photometry of the simulated galaxies the effect of emission lines produced in starforming regions. The latter has ensured the mock capability to correctly predict the galaxy photometry in narrow band filters. To determine the exact flux of emission lines we have used a model for the nebular emission in star-forming regions, coupled with a dust attenuation model, able to predict the flux emitted in 9 different lines. The validation of our lightcone has been done by comparing galaxy number counts, angular clustering, and Halpha, Hbeta, OII and OIII luminosity functions to a compilation of observations. We have applied all these procedures to generate catalogues tailored for J-PLUS, a large optical galaxy survey featuring a large number of narrow band filters. By analysing the J-PLUS mock catalogues, we have proved the ability of the survey to correctly identify a population of emission-line galaxies at various redshifts. As we summarize above, in this thesis we have tackled several aspects related to the details of galaxy formation, trying to bridge theoretical and observational approaches. The advance of theoretical models combined with the data from future experiments will certainly help to complete a detailed picture of how structures in our Universe form and evolve.<br /
Dark siren cosmology with binary black holes in the era of third-generation gravitational wave detectors
Third-generation (3G) gravitational wave detectors, in particular Einstein
Telescope (ET) and Cosmic Explorer (CE), will explore unprecedented cosmic
volumes in search for compact binary mergers, providing us with tens of
thousands of detections per year. In this study, we simulate and employ binary
black holes detected by 3G interferometers as dark sirens, to extract and infer
cosmological parameters by cross-matching gravitational wave data with
electromagnetic information retrieved from a simulated galaxy catalog.
Considering a standard CDM model, we apply a suitable Bayesian
framework to obtain joint posterior distributions for the Hubble constant
and the matter energy density parameter in different scenarios.
Assuming a galaxy catalog complete up to and dark sirens detected with a
network signal-to-noise ratio greater than 300, we show that a network made of
ET and two CEs can constrain () to a promising
() at confidence interval within one year of continuous
observations. Additionally, we find that most of the information on is
contained in local, single-host dark sirens, and that dark sirens at do
not substantially improve these estimates. Our results imply that a sub-percent
measure of can confidently be attained by a network of 3G detectors,
highlighting the need for characterising all systematic effects to a higher
accuracy.Comment: 23 pages, 8 figures. Major update on results, updated figures, v2
accepted for publication in PR
The rise and fall of bars in disc galaxies from to . The role of the environment
We investigate the influence of the environment on the evolution of barred
and unbarred disc galaxies with a mass >10^{10}\Msun from z=1 down to z=0,
employing the TNG50 magnetic-hydrodynamical simulation. We find that 49% of z=1
disc galaxies undergoes a morphological transformation, transitioning into
either a lenticular or spheroidal, while the other 51% retains the massive
disc. The morphological alteration is mostly influenced by the environment.
Lenticular and spheroidal galaxies tend to exist in denser environments and
have more frequent mergers compared to disc galaxies. We find that over half of
the barred galaxies (60.2%) retain the bar structure and have experienced fewer
mergers compared to those galaxies that lose their bars (5.6%). These latter
ones start with weaker and shorter bars at z=1 influenced by tidal interactions
and are frequently observed in more populated areas. Additionally, our study
reveals that less than 20% of unbarred galaxies will never develop a bar and
exhibit the quietest merger history. Unbarred galaxies that experience bar
formation after z=1 exhibit more frequent instances of merging events.
Furthermore, tidal interactions with a close companion may account for bar
formation in at least one-third of the cases. Our findings highlight that
stable bars are prevalent in disc galaxies. Bar evolution may nonetheless be
affected by the environment. Interactions with nearby companions or tidal
forces caused by mergers have the capacity to disrupt the disc. This
perturbance may materialise as the dissolution of the bar, the formation of a
bar, or, in its most severe form, the complete destruction of the disc,
resulting in morphological transformation. Bars that are weak and short at z=1
and undergo major or minor mergers may eventually dissolve, whereas unbarred
galaxies that enter crowded environments or experience a merger may develop a
bar.Comment: 20 pages, 18 Figures, accepted for publication in A&A with language
corrections and updates in some Figure
Galaxy fields of LISA massive black hole mergers in a simulated Universe
LISA will extend the search for gravitational waves (GWs) at
mHz where loud signals from coalescing binary black holes of are expected. Depending on their mass and
luminosity distance, the uncertainty in the LISA sky-localization decreases
from hundreds of deg during the inspiral phase to fractions of a deg
after the merger. By using the semi-analytical model L-Galaxies applied to the
Millennium-I merger trees, we generate a simulated Universe to identify the
hosts of coalescing binaries with total mass of
, and , and varying mass ratio. We find that, even at the time of merger,
the number of galaxies around the LISA sources is too large ()
to allow direct host identification. However, if an X-ray counterpart is
associated to the GW sources at , all LISA fields at merger are
populated by AGNs emitting above . For sources at higher redshifts, the poorer
sky-localization causes this number to increase up to . Archival
data from eRosita will allow discarding of these AGNs, being
too shallow to detect the dim X-ray luminosity of the GW sources. Inspiralling
binaries in an active phase with masses at
can be detected, as early as hours before the merger, by
future X-ray observatories in less than a few minutes. For these systems,
AGNs are within the LISA sky-localization area. Finally, the
LISA-Taiji network would guarantee the identification of an X-ray counterpart
hours before merger for all binaries at .Comment: 25 pages, 14 Figures, To be submitted to MNRA
The miniJPAS & J-NEP surveys: Identification and characterization of the Ly Emitter population and the Ly Luminosity Function
We present the Lyman- (Lya) Luminosity Function (LF) at ,
estimated from a sample of 67 Lya-emitter (LAE) candidates in the J-PAS
Pathfinder surveys: miniJPAS and J-NEP. These two surveys cover a total
effective area of deg with 54 Narrow Band (NB) filters across
the optical range, with typical limiting magnitudes of . This set of
NBs allows to probe Lya emission in a wide and continuous range of redshifts.
We develop a method for detecting Lya emission for the estimation of the Lya LF
using the whole J-PAS filter set. We test this method by applying it to the
miniJPAS and J-NEP data. In order to compute the corrections needed to estimate
the Lya LF and to test the performance of the candidates selection method, we
build mock catalogs. These include representative populations of Lya Emitters
at as well as their expected contaminants, namely low- galaxies
and QSOs. We show that our method is able to provide the Lya LF at the
intermediate-bright range of luminosity (). The photometric information provided
by these surveys suggests that our samples are dominated by bright,
Lya-emitting Active Galactic Nuclei. At
erg\,s, we fit our Lya LF to a power-law with slope . We
also fit a Schechter function to our data, obtaining: Log(\Phi^* /
\text{Mpc^{-3}})=-6.30^{+0.48}_{-0.70}, Log, . Overall, our
results confirm the presence of an AGN component at the bright-end of the Lya
LF. In particular, we find no significant contribution of star-forming LAEs to
the Lya LF at Log / erg\,s)>43.5. This work serves as a
proof-of-concept for the results that can be obtained with the upcoming data
releases of the J-PAS survey.Comment: 25 pages, 15 figures, submitted to A&
The environment of radio galaxies: a signature of AGN feedback at high redshifts
We use the semi-analytical model of galaxy formation GALFORM to characterize an indirect signature of active galactic nucleus (AGN) feedback in the environment of radio galaxies at high redshifts. The predicted environment of radio galaxies is denser than that of radio-quiet galaxies with the same stellar mass. This is consistent with observational results from the CARLA survey. Our model shows that the differences in environment are due to radio galaxies being hosted by dark matter haloes that are ∼1.5 dex more massive than those hosting radio-quiet galaxies with the same stellar mass. By running a control simulation in which AGN feedback is switched off, we identify AGN feedback as the primary mechanism affecting the build up of the stellar component of radio galaxies, thus explaining the different environment in radio galaxies and their radio-quiet counterparts. The difference in host halo mass between radio-loud and radio-quiet galaxies translates into different galaxies populating each environment. We predict a higher fraction of passive galaxies around radio-loud galaxies compared to their radio-quiet counterparts. Furthermore, such a high fraction of passive galaxies shapes the predicted infrared luminosity function in the environment of radio galaxies in a way that is consistent with observational findings. Our results suggest that the impact of AGN feedback at high redshifts and environmental mechanisms affecting galaxies in high halo masses can be revealed by studying the environment of radio galaxies, thus providing new constraints on galaxy formation physics at high redshifts