54 research outputs found

    On the structure of the upper atmosphere of Mars according to data from experiments on the Viking space vehicles

    Get PDF
    Altitude profiles of the concentrations of the atmospheric components measured by the on board mass spectrometers during the descent of Viking lander are discussed by assuming that temperature has a smoother profile, and the eddy mixing coefficients are smaller at altitudes of 120 to 170 km than those formally determined. The influence of acoustic gravitational waves and errors in measurements and calculations are discussed in relation to the convolutions in the altitude profiles of the concentrations of the atmospheric components and the temperature of the atmosphere

    The model of the composition of the Martian atmosphere

    Get PDF
    Global mean distributions of Martian atmospheric components concentrations from the planet's surface up to an altitude of 250 km are calculated. Improved data on the turbulent mixing coefficient, as a function of altitude, on temperature distribution and on chemical and photochemical reaction rates are used. The model data agree well with available measurements of some components concentrations. Variations of composition due to long-period variations of temperature, moisture and turbulent mixing are investigated. The relative significance of different catalytic cycles and the important role of excited atoms 0 (d-1) are revealed

    Influence of Property Right Redistribution on Company Economic Efficiency

    Get PDF
    Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ исслСдован ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ влияния измСнСния структуры ΠΏΡ€Π°Π² собствСнности Π½Π° ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Ρ„ΠΈΡ€ΠΌΡ‹. Π‘Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π° модСль, ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‰Π°Ρ влияниС, Π²Ρ‹Π·Π²Π°Π½Π½ΠΎΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ структуры ΠΏΡ€Π°Π² собствСнности Π½Π° ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ. Π’ Ρ€Π°ΠΌΠΊΠ°Ρ… ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ понятиС ΠΈΠ½ΡΡ‚ΠΈΡ‚ΡƒΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ эффСктивности Ρ„ΠΈΡ€ΠΌΡ‹, ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‰Π΅Π΅ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈΠ±Ρ‹Π»ΠΈ ΠΊ ΠΈΠ·Π΄Π΅Ρ€ΠΆΠΊΠ°ΠΌ, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‰ΠΈΠΌ Π² процСссС взаимодСйствия экономичСских ΡΡƒΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² Π²Π½ΡƒΡ‚Ρ€ΠΈ Ρ„ΠΈΡ€ΠΌΡ‹ Ρ‡Π΅Ρ€Π΅Π· ΠΈΠ½ΡΡ‚ΠΈΡ‚ΡƒΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ. Π’ качСствС критСрия ΠΎΡ†Π΅Π½ΠΊΠΈ влияния пСрСраспрСдСлСния ΠΏΡ€Π°Π² собствСнности Π½Π° ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π²Π²Π΅Π΄Π΅Π½ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒ измСнСния ΠΈΠ½ΡΡ‚ΠΈΡ‚ΡƒΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ эффСктивности.The article investigates the mechanism of influence of changes in property rights distribution structure on a company performance. The model, taking into account the influence caused by changes in property rights distribution structure on the performance efficiency, has been designed. The concept of company institutional efficiency within the framework of the presented model has been offered. It reflects the ratio of profit to expenses, which occur during economic subject interaction inside a company through an institutional function. An index of institutional efficiency changes has been introduced as an evaluation criterion of influence of changes in property rights redistribution on the efficiency

    Uniqueness Properties of Solutions to the Benjamin-Ono equation and related models

    Get PDF
    We prove that if u1, u2 are solutions of the Benjamin- Ono equation defined in (x, t) ∈ R Γ— [0, T ] which agree in an open set Ξ© βŠ‚ R Γ— [0,T], then u1 ≑ u2. We extend this uniqueness result to a general class of equations of Benjamin-Ono type in both the initial value problem and the initial periodic boundary value problem. This class of 1-dimensional non-local models includes the intermediate long wave equation. Finally, we present a slightly stronger version of our uniqueness results for the Benjamin-Ono equation

    Unique, non‐Earthlike, meteoritic ion behavior in upper atmosphere of Mars

    Get PDF
    Interplanetary dust particles have long been expected to produce permanent ionospheric metal ion layers at Mars, as on Earth, but the two environments are so different that uncertainty existed as to whether terrestrial-established understanding would apply to Mars. The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission made the first in situ detection of the continuous presence of Na+, Mg+, and Fe+ at Mars and indeed revealed non-Earthlike features/processes. There is no separation of the light Mg+ and the heavy Fe+ with increasing altitude as expected for gravity control. The metal ions are well-mixed with the neutral atmosphere at altitudes where no mixing process is expected. Isolated metal ion layers mimicking Earth's sporadic E layers occur despite the lack of a strong magnetic field as required at Earth. Further, the metal ion distributions are coherent enough to always show atmospheric gravity wave signatures. All features and processes are unique to Mars

    Bioremediation approaches for oil contaminated soilsΒ in extremely high-mountainous conditions

    No full text
    Development of methods for bioremediation of soils contaminated with petroleum products is one of the most urgent tasks of our time. This task is more difficult to perform in high-mountainous landscapes, at an altitude of more than 4 000 m a.s.l. Moreover, these high-mountain ecosystems are the most vulnerable to various kinds of anthropogenic impacts, and therefore the relevance of bioremediation is obvious. The research was conducted in the high-altitude ecosystems of the Kyrgyz Republic at the Kumtor mine. In this study was carried out on the bioremediation of oil contaminated soil using biostimulation, bioaugmentation and biostimulation + bioaugmentation remediation techniques for 90 days in the climatic conditions of high mountain region. The biostimulation treatment showed the highest total petroleum hydrocarbons (TPH) biodegradation percentage 62.78% compared to the bioaugmentation 50.63% and biostimulation + bioaugmentation 49.11%. Thus, the method of biostimulation proved to be the most effective method for bioremediation of soils contaminated with petroleum products. The application of this method could be one of the successful methods of recycling contaminated soils. This study demonstrated the possibility of restoring TPH-polluted soils using biological methods of soil treatment in climatic cold conditions of high mountains

    Influence of Property Right Redistribution on Company Economic Efficiency

    No full text
    Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ исслСдован ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ влияния измСнСния структуры ΠΏΡ€Π°Π² собствСнности Π½Π° ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Ρ„ΠΈΡ€ΠΌΡ‹. Π‘Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π° модСль, ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‰Π°Ρ влияниС, Π²Ρ‹Π·Π²Π°Π½Π½ΠΎΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ структуры ΠΏΡ€Π°Π² собствСнности Π½Π° ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ. Π’ Ρ€Π°ΠΌΠΊΠ°Ρ… ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ понятиС ΠΈΠ½ΡΡ‚ΠΈΡ‚ΡƒΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ эффСктивности Ρ„ΠΈΡ€ΠΌΡ‹, ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‰Π΅Π΅ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈΠ±Ρ‹Π»ΠΈ ΠΊ ΠΈΠ·Π΄Π΅Ρ€ΠΆΠΊΠ°ΠΌ, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‰ΠΈΠΌ Π² процСссС взаимодСйствия экономичСских ΡΡƒΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² Π²Π½ΡƒΡ‚Ρ€ΠΈ Ρ„ΠΈΡ€ΠΌΡ‹ Ρ‡Π΅Ρ€Π΅Π· ΠΈΠ½ΡΡ‚ΠΈΡ‚ΡƒΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ. Π’ качСствС критСрия ΠΎΡ†Π΅Π½ΠΊΠΈ влияния пСрСраспрСдСлСния ΠΏΡ€Π°Π² собствСнности Π½Π° ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π²Π²Π΅Π΄Π΅Π½ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒ измСнСния ΠΈΠ½ΡΡ‚ΠΈΡ‚ΡƒΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ эффСктивности.The article investigates the mechanism of influence of changes in property rights distribution structure on a company performance. The model, taking into account the influence caused by changes in property rights distribution structure on the performance efficiency, has been designed. The concept of company institutional efficiency within the framework of the presented model has been offered. It reflects the ratio of profit to expenses, which occur during economic subject interaction inside a company through an institutional function. An index of institutional efficiency changes has been introduced as an evaluation criterion of influence of changes in property rights redistribution on the efficiency

    Π ΠΎΠ·Ρ€ΠΎΠ±ΠΊΠ° Ρ€Π΅ΡΡƒΡ€ΡΠΎΠ·Π±Π΅Ρ€Ρ–Π³Π°ΡŽΡ‡ΠΎΡ—, ΠΌΠ°Π»ΠΎΠ³Π°Π±Π°Ρ€ΠΈΡ‚Π½ΠΎΡ— Π·Π°Π±Ρ–ΠΉΠ½ΠΎΡ— Π³Ρ–Π΄Ρ€ΠΎΠΌΠ°ΡˆΠΈΠ½ΠΈ для буріння свСрдловин

    No full text
    Our analysis of the structural features and technological capabilities of serial downhole hydraulic motors (hydraulic machines), designed for drilling wells, has revealed their shortcomings. These include the limited resources due to the complexity of their design, the consumption of a working fluid, significant dimensions in length, mass, low rotation frequencies of the shaft, which do not correspond to the technological modes of wells diamond drilling. Based on the analysis of structural schemes of downhole hydraulic motors it has been concluded that the greatest opportunities for maximum use of the potential energy of a working fluid are demonstrated by rotary-type hydraulic machines.We have proposed, as the object of the study, a structural scheme of the hydraulic machine, which applies the physical principles of converting the weight (energy) of the column of a working fluid at the time of stator rotation around the non-rotating rotor. The principles of separation in the direction of movement of the incoming flow from the reverse spreading have been taken into consideration, as well as the exclusion of a stagnant zone and the creation of a multilevel momentum of reactive forces by the flow of a fluid.Based on the devised procedure, we have performed theoretical calculations of energy characteristics of a two-chamber deep hydraulic machine, defined technical specifications; the calculation scheme of force interaction between a working liquid and the elements of a hydraulic machine is given.Based on the results from theoretical calculations, the structural-technological documentation for a downhole hydraulic machine has been developed; a prototype was made and experiments were conducted to determine operability of the scheme, as well as the boundary values of its operation. The quantitative values for its energy characteristics were determined based on the readings from control-measurement instrumentation.We have conducted a comparative analysis of the technical and energy characteristics of a rotary-type downhole hydraulic machine with industrially produced hydraulic engines, the turbodrill TG-124, and the screw engine D1-124, of the same diameter.Conditions for the utilization of a downhole hydraulic machine have been proposed, as well promising directions for the further research and development to improve it and expand the scope of its applicationАнализом структурных особСнностСй ΠΈ тСхнологичСских возмоТностСй сСрийных Π·Π°Π±ΠΎΠΉΠ½Ρ‹Ρ… Π³ΠΈΠ΄Ρ€ΠΎΠ΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»Π΅ΠΉ (Π³ΠΈΠ΄Ρ€ΠΎΠΌΠ°ΡˆΠΈΠ½), ΠΏΡ€Π΅Π΄Π½Π°Π·Π½Π°Ρ‡Π΅Π½Π½Ρ‹Ρ… для бурСния скваТин, установлСны ΠΈΡ… нСдостатки. Π­Ρ‚ΠΎ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½Ρ‹Π΅ рСсурсы, обусловлСнныС ΡΠ»ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒΡŽ конструкции, расход Ρ€Π°Π±ΠΎΡ‡Π΅ΠΉ Тидкости, Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Π³Π°Π±Π°Ρ€ΠΈΡ‚Π½Ρ‹Π΅ Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹ ΠΏΠΎ Π΄Π»ΠΈΠ½Π΅, масса, Π½ΠΈΠ·ΠΊΠΈΠ΅ частоты вращСния Π²Π°Π»Π°, Π½Π΅ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ тСхнологичСским Ρ€Π΅ΠΆΠΈΠΌΠ°ΠΌ Π°Π»ΠΌΠ°Π·Π½ΠΎΠ³ΠΎ бурСния скваТин. Из Π°Π½Π°Π»ΠΈΠ·Π° конструктивных схСм Π·Π°Π±ΠΎΠΉΠ½Ρ‹Ρ… Π³ΠΈΠ΄Ρ€ΠΎΠ΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»Π΅ΠΉ сдСлан Π²Ρ‹Π²ΠΎΠ΄, Ρ‡Ρ‚ΠΎ наибольшиС возмоТности для максимального использования ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ энСргии Ρ€Π°Π±ΠΎΡ‡Π΅ΠΉ Тидкости ΠΈΠΌΠ΅ΡŽΡ‚ Π³ΠΈΠ΄Ρ€ΠΎΠΌΠ°ΡˆΠΈΠ½Ρ‹ Ρ€ΠΎΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ°.Π’ качСствС ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° исслСдования Π±Ρ‹Π»Π° ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° конструктивная схСма Π³ΠΈΠ΄Ρ€ΠΎΠΌΠ°ΡˆΠΈΠ½Ρ‹, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ физичСскиС ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΡ‹ прСобразования вСса (энСргии) столба Ρ€Π°Π±ΠΎΡ‡Π΅ΠΉ Тидкости Π² ΠΌΠΎΠΌΠ΅Π½Ρ‚ вращСния статора Π²ΠΎΠΊΡ€ΡƒΠ³ Π½Π΅ Π²Ρ€Π°Ρ‰Π°ΡŽΡ‰Π΅Π³ΠΎΡΡ Ρ€ΠΎΡ‚ΠΎΡ€Π°. Π£Ρ‡Ρ‚Π΅Π½Ρ‹ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΡ‹ раздСлСния ΠΏΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ двиТСния Π½Π°Π±Π΅Π³Π°ΡŽΡ‰Π΅Π³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΠ° ΠΎΡ‚ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ Ρ€Π°ΡΡ‚Π΅ΠΊΠ°ΡŽΡ‰Π΅Π³ΠΎΡΡ, ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ застойной Π·ΠΎΠ½Ρ‹ ΠΈ созданиС ΠΌΠ½ΠΎΠ³ΠΎΡƒΡ€ΠΎΠ²Π½Π΅Π²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π° Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… сил истСчСниСм Тидкости.По Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ΅ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Ρ‹ тСорСтичСскиС расчСты энСргСтичСских характСристик Π΄Π²ΡƒΡ…ΠΊΠ°ΠΌΠ΅Ρ€Π½ΠΎΠΉ Π³Π»ΡƒΠ±ΠΈΠ½Π½ΠΎΠΉ Π³ΠΈΠ΄Ρ€ΠΎΠΌΠ°ΡˆΠΈΠ½Ρ‹, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ тСхничСскиС Π΄Π°Π½Π½Ρ‹Π΅, ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π° расчСтная схСма силового взаимодСйствия Ρ€Π°Π±ΠΎΡ‡Π΅ΠΉ Тидкости с элСмСнтами Π³ΠΈΠ΄Ρ€ΠΎΠΌΠ°ΡˆΠΈΠ½Ρ‹.На основании Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² тСорСтичСских вычислСний Π±Ρ‹Π»Π° Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° конструкторско-тСхнологичСская докумСнтация Π·Π°Π±ΠΎΠΉΠ½ΠΎΠΉ Π³ΠΈΠ΄Ρ€ΠΎΠΌΠ°ΡˆΠΈΠ½Ρ‹, ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ ΠΎΠΏΡ‹Ρ‚Π½Ρ‹ΠΉ ΠΎΠ±Ρ€Π°Π·Π΅Ρ†, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ экспСримСнты для выявлСния работоспособности схСмы, Π³Ρ€Π°Π½ΠΈΡ‡Π½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π΅Π΅ работоспособности. ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²Π΅Π½Π½Ρ‹Π΅ значСния Π΅Π΅ энСргСтичСских характСристик ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ ΠΏΠΎ показанию ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎ-ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€ΠΈΠ±ΠΎΡ€ΠΎΠ².Π‘Π΄Π΅Π»Π°Π½ ΡΠΎΠΏΠΎΡΡ‚Π°Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· тСхничСских ΠΈ энСргСтичСских характСристик Π·Π°Π±ΠΎΠΉΠ½ΠΎΠΉ Π³ΠΈΠ΄Ρ€ΠΎΠΌΠ°ΡˆΠΈΠ½Ρ‹ Ρ€ΠΎΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° с сСрийно выпускаСмыми сСрийными гидродвигатСлями, Ρ‚ΡƒΡ€Π±ΠΎΠ±ΡƒΡ€ΠΎΠΌ Π’Π“-124 ΠΈ Π²ΠΈΠ½Ρ‚ΠΎΠ²Ρ‹ΠΌ Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»Π΅ΠΌ Π”1-124 ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Π°.ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Ρ‹ условия примСнСния Π·Π°Π±ΠΎΠΉΠ½ΠΎΠΉ Π³ΠΈΠ΄Ρ€ΠΎΠΌΠ°ΡˆΠΈΠ½Ρ‹, пСрспСктивныС направлСния Π΄Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠΈΡ… Π½Π°ΡƒΡ‡Π½Ρ‹Ρ… исслСдований ΠΈ ΠΎΠΏΡ‹Ρ‚Π½ΠΎ-конструкторских Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΎΠΊ ΠΏΠΎ Π΅Π΅ ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΡŽ ΠΈ Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΡŽ сфСры примСнСнияАналізом структурних особливостСй Ρ– Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… моТливостСй сСрійних Π·Π°Π±Ρ–ΠΉΠ½ΠΈΡ… Π³Ρ–Π΄Ρ€ΠΎΠ΄Π²ΠΈΠ³ΡƒΠ½Ρ–Π² (Π³Ρ–Π΄Ρ€ΠΎΠΌΠ°ΡˆΠΈΠ½), ΠΏΡ€ΠΈΠ·Π½Π°Ρ‡Π΅Π½ΠΈΡ… для буріння свСрдловин, встановлСні Ρ—Ρ… Π½Π΅Π΄ΠΎΠ»Ρ–ΠΊΠΈ. Π¦Π΅ ΠΎΠ±ΠΌΠ΅ΠΆΠ΅Π½Ρ– рСсурси, ΠΎΠ±ΡƒΠΌΠΎΠ²Π»Π΅Π½Ρ– ΡΠΊΠ»Π°Π΄Π½Ρ–ΡΡ‚ΡŽ конструкції, Π²ΠΈΡ‚Ρ€Π°Ρ‚Π° Ρ€ΠΎΠ±ΠΎΡ‡ΠΎΡ— Ρ€Ρ–Π΄ΠΈΠ½ΠΈ, Π·Π½Π°Ρ‡Π½Ρ– Π³Π°Π±Π°Ρ€ΠΈΡ‚Π½Ρ– Ρ€ΠΎΠ·ΠΌΡ–Ρ€ΠΈ ΠΏΠΎ Π΄ΠΎΠ²ΠΆΠΈΠ½Ρ–, маса, Π½ΠΈΠ·ΡŒΠΊΡ– частоти обСртання Π²Π°Π»Ρƒ, Ρ‰ΠΎ Π½Π΅ Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π°ΡŽΡ‚ΡŒ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΠΌ Ρ€Π΅ΠΆΠΈΠΌΠ°ΠΌ Π°Π»ΠΌΠ°Π·Π½ΠΎΠ³ΠΎ буріння свСрдловин. Π— Π°Π½Π°Π»Ρ–Π·Ρƒ конструктивних схСм Π·Π°Π±Ρ–ΠΉΠ½ΠΈΡ… Π³Ρ–Π΄Ρ€ΠΎΠ΄Π²ΠΈΠ³ΡƒΠ½Ρ–Π² Π·Ρ€ΠΎΠ±Π»Π΅Π½ΠΎ висновок, Ρ‰ΠΎ Π½Π°ΠΉΠ±Ρ–Π»ΡŒΡˆΡ– моТливості для максимального використання ΠΏΠΎΡ‚Π΅Π½Ρ†Ρ–ΠΉΠ½ΠΎΡ— Π΅Π½Π΅Ρ€Π³Ρ–Ρ— Ρ€ΠΎΠ±ΠΎΡ‡ΠΎΡ— Ρ€Ρ–Π΄ΠΈΠ½ΠΈ ΠΌΠ°ΡŽΡ‚ΡŒ Π³Ρ–Π΄Ρ€ΠΎΠΌΠ°ΡˆΠΈΠ½ΠΈ Ρ€ΠΎΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΡƒ.Π―ΠΊ ΠΎΠ±'Ρ”ΠΊΡ‚ дослідТСння Π±ΡƒΠ»Π° Π·Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½Π° конструктивна схСма Π³Ρ–Π΄Ρ€ΠΎΠΌΠ°ΡˆΠΈΠ½ΠΈ, Π² якій використані Ρ„Ρ–Π·ΠΈΡ‡Π½Ρ– ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΈ пСрСтворСння Π²Π°Π³ΠΈ (Π΅Π½Π΅Ρ€Π³Ρ–Ρ—) стовпа Ρ€ΠΎΠ±ΠΎΡ‡ΠΎΡ— Ρ€Ρ–Π΄ΠΈΠ½ΠΈ Π² ΠΌΠΎΠΌΠ΅Π½Ρ‚ обСртання статора Π½Π°Π²ΠΊΡ€ΡƒΠ³ΠΈ Ρ€ΠΎΡ‚ΠΎΡ€Π°, Ρ‰ΠΎ Π½Π΅ ΠΎΠ±Π΅Ρ€Ρ‚Π°Ρ”Ρ‚ΡŒΡΡ. Π’Ρ€Π°Ρ…ΠΎΠ²Π°Π½Ρ– ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΈ Ρ€ΠΎΠ·ΠΏΠΎΠ΄Ρ–Π»Ρƒ Ρƒ напрямку Ρ€ΡƒΡ…Ρƒ ΠΏΠΎΡ‚ΠΎΠΊΡƒ, Ρ‰ΠΎ Π½Π°Π±Ρ–Π³Π°Ρ”, Π²Ρ–Π΄ Π·Π²ΠΎΡ€ΠΎΡ‚Π½ΠΎΠ³ΠΎ, Ρ‰ΠΎ Ρ€ΠΎΠ·Ρ‚Ρ–ΠΊΠ°Ρ”Ρ‚ΡŒΡΡ, Π²ΠΈΠΊΠ»ΡŽΡ‡Π΅Π½Π½Ρ застійної Π·ΠΎΠ½ΠΈ Ρ– створСння Π±Π°Π³Π°Ρ‚ΠΎΡ€Ρ–Π²Π½Π΅Π²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρƒ Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ²Π½ΠΈΡ… сил витікання Ρ€Ρ–Π΄ΠΈΠ½ΠΈ.Π—Π° Ρ€ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½ΠΎΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΎΡŽ Π²ΠΈΠΊΠΎΠ½Π°Π½Ρ– Ρ‚Π΅ΠΎΡ€Π΅Ρ‚ΠΈΡ‡Π½Ρ– Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΊΠΈ Π΅Π½Π΅Ρ€Π³Π΅Ρ‚ΠΈΡ‡Π½ΠΈΡ… характСристик Π΄Π²ΠΎΡ…ΠΊΠ°ΠΌΠ΅Ρ€Π½ΠΎΡ— Π³Π»ΠΈΠ±ΠΈΠ½Π½ΠΎΡ— Π³Ρ–Π΄Ρ€ΠΎΠΌΠ°ΡˆΠΈΠ½ΠΈ, Π²ΠΈΠ·Π½Π°Ρ‡Π΅Π½Ρ– Ρ‚Π΅Ρ…Π½Ρ–Ρ‡Π½Ρ– Π΄Π°Π½Ρ–, Π½Π°Π²Π΅Π΄Π΅Π½Π° Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΊΠΎΠ²Π° схСма силової Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— Ρ€ΠΎΠ±ΠΎΡ‡ΠΎΡ— Ρ€Ρ–Π΄ΠΈΠ½ΠΈ Π· Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ Π³Ρ–Π΄Ρ€ΠΎΠΌΠ°ΡˆΠΈΠ½ΠΈ.На підставі Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ–Π² Ρ‚Π΅ΠΎΡ€Π΅Ρ‚ΠΈΡ‡Π½ΠΈΡ… ΠΎΠ±Ρ‡ΠΈΡΠ»Π΅Π½ΡŒ Π±ΡƒΠ»Π° Ρ€ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½Π° ΠΊΠΎΠ½ΡΡ‚Ρ€ΡƒΠΊΡ‚ΠΎΡ€ΡΡŒΠΊΠΎ-Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Π° докумСнтація Π·Π°Π±Ρ–ΠΉΠ½ΠΎΡ— Π³Ρ–Π΄Ρ€ΠΎΠΌΠ°ΡˆΠΈΠ½ΠΈ, Π²ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΎ дослідний Π·Ρ€Π°Π·ΠΎΠΊ, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ– СкспСримСнти для виявлСння працСздатності схСми, Π³Ρ€Π°Π½ΠΈΡ‡Π½ΠΈΡ… Π·Π½Π°Ρ‡Π΅Π½ΡŒ Ρ—Ρ— працСздатності. ΠšΡ–Π»ΡŒΠΊΡ–ΡΠ½Ρ– значСння Ρ—Ρ— Π΅Π½Π΅Ρ€Π³Π΅Ρ‚ΠΈΡ‡Π½ΠΈΡ… характСристик Π²ΠΈΠ·Π½Π°Ρ‡Π΅Π½Ρ– Π·Π° показаннями ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎ-Π²ΠΈΠΌΡ–Ρ€ΡŽΠ²Π°Π»ΡŒΠ½ΠΈΡ… ΠΏΡ€ΠΈΠ»Π°Π΄Ρ–Π².Π—Ρ€ΠΎΠ±Π»Π΅Π½ΠΎ ΠΏΠΎΡ€Ρ–Π²Π½ΡΠ»ΡŒΠ½ΠΈΠΉ Π°Π½Π°Π»Ρ–Π· Ρ‚Π΅Ρ…Π½Ρ–Ρ‡Π½ΠΈΡ… Ρ– Π΅Π½Π΅Ρ€Π³Π΅Ρ‚ΠΈΡ‡Π½ΠΈΡ… характСристик Π·Π°Π±Ρ–ΠΉΠ½ΠΎΡ— Π³Ρ–Π΄Ρ€ΠΎΠΌΠ°ΡˆΠΈΠ½ΠΈ Ρ€ΠΎΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΡƒ Π· сСрійно Π²ΠΈΠΏΡƒΡΠΊΠ°ΡŽΡ‡ΠΈΠΌΠΈ сСрійними Π³Ρ–Π΄Ρ€ΠΎΠ΄Π²ΠΈΠ³ΡƒΠ½Π°ΠΌΠΈ, Ρ‚ΡƒΡ€Π±ΠΎΠ±ΡƒΡ€ΠΎΠΌ Π’Π“-124 Ρ– Π³Π²ΠΈΠ½Ρ‚ΠΎΠ²ΠΈΠΌ Π΄Π²ΠΈΠ³ΡƒΠ½ΠΎΠΌ Π”1-124 ΠΎΠ΄Π½Π°ΠΊΠΎΠ²ΠΎΠ³ΠΎ Π΄Ρ–Π°ΠΌΠ΅Ρ‚Ρ€Π°.Π—Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ ΡƒΠΌΠΎΠ²ΠΈ застосування Π·Π°Π±Ρ–ΠΉΠ½ΠΎΡ— Π³Ρ–Π΄Ρ€ΠΎΠΌΠ°ΡˆΠΈΠ½ΠΈ, пСрспСктивні напрямки ΠΏΠΎΠ΄Π°Π»ΡŒΡˆΠΈΡ… Π½Π°ΡƒΠΊΠΎΠ²ΠΈΡ… Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ Ρ– дослідно-ΠΊΠΎΠ½ΡΡ‚Ρ€ΡƒΠΊΡ‚ΠΎΡ€ΡΡŒΠΊΠΈΡ… Ρ€ΠΎΠ·Ρ€ΠΎΠ±ΠΎΠΊ Ρ‰ΠΎΠ΄ΠΎ Ρ—Ρ— вдосконалСння Ρ– Ρ€ΠΎΠ·ΡˆΠΈΡ€Π΅Π½Π½Ρ сфСри застосуванн
    • …
    corecore