10 research outputs found

    Inhibitory Input from the Lateral Hypothalamus to the Ventral Tegmental Area Disinhibits Dopamine Neurons and Promotes Behavioral Activation

    Get PDF
    Projections from the lateral hypothalamus (LH) to the ventral tegmental area (VTA), containing both GABAergic and glutamatergic components, encode conditioned responses and control compulsive reward-seeking behavior. GABAergic neurons in the LH have been shown to mediate appetitive and feeding-related behaviors. Here we show that the GABAergic component of the LH-VTA pathway supports positive reinforcement and place preference, while the glutamatergic component mediates place avoidance. In addition, our results indicate that photoactivation of these projections modulates other behaviors, such as social interaction and perseverant investigation of a novel object. We provide evidence that photostimulation of the GABAergic LH-VTA component, but not the glutamatergic component, increases dopamine (DA) release in the nucleus accumbens (NAc) via inhibition of local VTA GABAergic neurons. Our study clarifies how GABAergic LH inputs to the VTA can contribute to generalized behavioral activation across multiple contexts, consistent with a role in increasing motivational salience.National Institute of Mental Health (U.S.) (Grant R01-MH102441-01

    Amygdala inputs to prefrontal cortex guide behavior amid conflicting cues of reward and punishment

    Get PDF
    Orchestrating appropriate behavioral responses in the face of competing signals that predict either rewards or threats in the environment is crucial for survival. The basolateral nucleus of the amygdala (BLA) and prelimbic (PL) medial prefrontal cortex have been implicated in reward-seeking and fear-related responses, but how information flows between these reciprocally connected structures to coordinate behavior is unknown. We recorded neuronal activity from the BLA and PL while rats performed a task wherein competing shock- and sucrose-predictive cues were simultaneously presented. The correlated firing primarily displayed a BLA→PL directionality during the shock-associated cue. Furthermore, BLA neurons optogenetically identified as projecting to PL more accurately predicted behavioral responses during competition than unidentified BLA neurons. Finally photostimulation of the BLA→PL projection increased freezing, whereas both chemogenetic and optogenetic inhibition reduced freezing. Therefore, the BLA→PL circuit is critical in governing the selection of behavioral responses in the face of competing signals.National Institutes of Health (U.S.) (Award 1R25-MH092912-01)National Institute of Mental Health (U.S.) (Grant R01- MH102441-01)National Institutes of Health (U.S.) (Award DP2- DK-102256-01

    Nature

    Get PDF
    The ability to associate temporally segregated information and assign positive or negative valence to environmental cues is paramount for survival. Studies have shown that different basolateral amygdala (BLA) projections are potentiated following reward or punishment learning1–7. However, we do not yet understand how valence specific information is routed to the BLA neurons with the appropriate downstream projections. Nor do we understand how to reconcile the subsecond timescales of synaptic plasticity8–11 with the longer timescales separating the predictive cues from their outcomes. Here, we demonstrate that neurotensin (NT) neurons in the paraventricular nucleus of the thalamus (PVT) projecting to the BLA (PVT-BLA:NT) mediate valence assignment by exerting concentration-dependent modulation in BLA during associative learning. We found that optogenetic activation of the PVT-BLA:NT projection promotes reward learning, while PVT-BLA projection-specific Nt gene knockout augments punishment learning. Using genetically encoded calcium and NT sensors, we further revealed that both calcium dynamics within the PVT-BLA:NT projection and NT concentrations in the BLA are enhanced after reward learning and reduced after punishment learning. Finally, we showed that CRISPR-mediated knockout of the Nt gene in the PVT-BLA pathway blunts BLA neural dynamics and attenuates the preference to active behavioral strategies to reward and punishment predictive cues. Taken together, we have identified NT as a neuropeptide that signals valence in the BLA, and showed that NT is a critical neuromodulator that orchestrates positive and negative valence assignment in amygdala neurons by extending valence-specific plasticity to behaviorally-relevant timescales

    Dorsal Raphe Dopamine Neurons Represent the Experience of Social Isolation

    No full text
    The motivation to seek social contact may arise from either positive or negative emotional states, as social interaction can be rewarding and social isolation can be aversive. While ventral tegmental area (VTA) dopamine (DA) neurons may mediate social reward, a cellular substrate for the negative affective state of loneliness has remained elusive. Here, we identify a functional role for DA neurons in the dorsal raphe nucleus (DRN), in which we observe synaptic changes following acute social isolation. DRN DA neurons show increased activity upon social contact following isolation, revealed by in vivo calcium imaging. Optogenetic activation of DRN DA neurons increases social preference but causes place avoidance. Furthermore, these neurons are necessary for promoting rebound sociability following an acute period of isolation. Finally, the degree to which these neurons modulate behavior is predicted by social rank, together supporting a role for DRN dopamine neurons in mediating a loneliness-like state.McKnight Foundation (New York Stem Cell Foundation-Robertson Investigator and McKnight Scholar)JPB FoundationWhitehall FoundationKlingenstein FoundationBrain & Behavior Research Foundation (NARSAD Young Investigator Award)Alfred P. Sloan FoundationWhitehead Institute for Biomedical Research (Whitehead Career Development Chair)National Institutes of Health (U.S.) (R01-MH102441-01 (NIMH))National Institutes of Health (U.S.) (NIH grant U54-CA112967)National Institute on Aging (RF1-AG047661-01 (NIA))National Institutes of Health (U.S.) (NIH Director’s New Investigator Award DP2- DK-102256-01 (NIDDK))Medical Research Council (Great Britain) (MC-A654-5QB70)National Institute of General Medical Sciences (U.S.) (NIGMS T32GM007484

    Corticoamygdala Transfer of Socially Derived Information Gates Observational Learning

    No full text
    Observational learning is a powerful survival tool allowing individuals to learn about threat-predictive stimuli without directly experiencing the pairing of the predictive cue and punishment. This ability has been linked to the anterior cingulate cortex (ACC) and the basolateral amygdala (BLA). To investigate how information is encoded and transmitted through this circuit, we performed electrophysiological recordings in mice observing a demonstrator mouse undergo associative fear conditioning and found that BLA-projecting ACC (ACC→BLA) neurons preferentially encode socially derived aversive cue information. Inhibition of ACC→BLA alters real-time amygdala representation of the aversive cue during observational conditioning. Selective inhibition of the ACC→BLA projection impaired acquisition, but not expression, of observational fear conditioning. We show that information derived from observation about the aversive value of the cue is transmitted from the ACC to the BLA and that this routing of information is critically instructive for observational fear conditioning. Video Abstract: [Figure presented] For an individual to watch another's experience and learn from it, signals need to move from cortical neurons to the basolateral amygdala during detection and integration of the necessary social cues.NIMH (Grant R01-MH102441-01)NIA (Grant RF1-AG047661-01)NIDDK (Award DP2-DK-102256-01)NCCIH (Grant DP1-AT009925)NIH (Grants 1-R01-AG-050548-01, DP1-OD003646 and R01-GM104948
    corecore