90 research outputs found

    Type-I Seesaw as the Common Origin of Neutrino Mass, Baryon Asymmetry, and the Electroweak Scale

    Full text link
    The type-I seesaw represents one of the most popular extensions of the Standard Model. Previous studies of this model have mostly focused on its ability to explain neutrino oscillations as well as on the generation of the baryon asymmetry via leptogenesis. Recently, it has been pointed out that the type-I seesaw can also account for the origin of the electroweak scale due to heavy-neutrino threshold corrections to the Higgs potential. In this paper, we show for the first time that all of these features of the type-I seesaw are compatible with each other. Integrating out a set of heavy Majorana neutrinos results in small masses for the Standard Model neutrinos; baryogenesis is accomplished by resonant leptogenesis; and the Higgs mass is entirely induced by heavy-neutrino one-loop diagrams, provided that the tree-level Higgs potential satisfies scale-invariant boundary conditions in the ultraviolet. The viable parameter space is characterized by a heavy-neutrino mass scale roughly in the range 106.57.010^{6.5\cdots7.0} GeV and a mass splitting among the nearly degenerate heavy-neutrino states up to a few TeV. Our findings have interesting implications for high-energy flavor models and low-energy neutrino observables. We conclude that the type-I seesaw sector might be the root cause behind the masses and cosmological abundances of all known particles. This statement might even extend to dark matter in the presence of a keV-scale sterile neutrino.Comment: 41 pages, 5 figures, matches version published in PR

    Excitation test results on a single inner vertical coil for the Large Helical Device

    Get PDF
    Excitation experiments on a single inner vertical coil for the Large Helical Device (LHD) were carried out to confirm its performance. The coil is one of the LHD\u27s poloidal field coils and consists of a forced-flow Nb-Ti cable-in-conduit conductor (CICC). After cooldown for 250 hours, the superconducting transition of the whole coil was confirmed. Pressure drops were measured during the cooldown to determine the coil\u27s hydraulic characteristics. Then, the coil was successfully energized up to the specified current, 20.8 kA. In the experiments, heat generation of joints, radial displacement and acoustic emission (AE) were measured

    Vaccine-induced Immunity Circumvented by Typical Mycobacterium tuberculosis Beijing Strains

    Get PDF
    The frequency of typical and atypical Beijing strains of Mycobacterium tuberculosis was determined in the Netherlands; Vietnam; and Hong Kong Special Administrative Region, People’s Republic of China. The strains’ associations with drug resistance, M. bovis BCG vaccination, and patient characteristics were assessed. BCG vaccination may have positively selected the prevalent typical Beijing strains

    A super Asian dust storm over the East and South China Seas: disproportionate dust deposition

    Get PDF
    A super Asian dust (SAD) storm that originated from North China has affected East Asia since 20 March 2010. The tempo-spatial and size distributions of aerosol Al, a tracer of wind-blown dust, were measured on a regional aerosol network in March 2010. Two dust events were recorded: the SAD and a relatively moderate AD event. The SAD clouds raised Al concentrations to ~50 µg/m3 on 21 and 22 March over the East China Sea (ECS) and occupied there for ~5 days. The SAD plume also stretched toward the South China Sea (SCS) on 21 March however, it caused a maximum Al concentration of ~8.5 µg/m3 only, much lower than that observed in the ECS. In comparison, a weaker dust plume on 16 March caused Al maximum of ~4 µg/m3 over the ECS, and comparably, ~3 µg/m3 in the SCS. Dry dust deposition was measured during the peak phase of the SAD at 178 mg/m2/d, which corresponded to dry deposition velocities of 0.2–0.6 cm/s only, much lower than the commonly adopted one (1–2 cm/s). The corresponding increase in dust deposition by the SAD was up to a factor of ~12, which was, however, considerably disproportionate to the increase in dust concentration (i.e., the factor of over 100). In certain cases, synoptic atmospheric conditions appear to be more important in regulating dust contribution to the SCS than the strength of AD storms

    Impact of primary kidney disease on the effects of empagliflozin in patients with chronic kidney disease: secondary analyses of the EMPA-KIDNEY trial

    Get PDF
    Background: The EMPA KIDNEY trial showed that empagliflozin reduced the risk of the primary composite outcome of kidney disease progression or cardiovascular death in patients with chronic kidney disease mainly through slowing progression. We aimed to assess how effects of empagliflozin might differ by primary kidney disease across its broad population. Methods: EMPA-KIDNEY, a randomised, controlled, phase 3 trial, was conducted at 241 centres in eight countries (Canada, China, Germany, Italy, Japan, Malaysia, the UK, and the USA). Patients were eligible if their estimated glomerular filtration rate (eGFR) was 20 to less than 45 mL/min per 1·73 m2, or 45 to less than 90 mL/min per 1·73 m2 with a urinary albumin-to-creatinine ratio (uACR) of 200 mg/g or higher at screening. They were randomly assigned (1:1) to 10 mg oral empagliflozin once daily or matching placebo. Effects on kidney disease progression (defined as a sustained ≥40% eGFR decline from randomisation, end-stage kidney disease, a sustained eGFR below 10 mL/min per 1·73 m2, or death from kidney failure) were assessed using prespecified Cox models, and eGFR slope analyses used shared parameter models. Subgroup comparisons were performed by including relevant interaction terms in models. EMPA-KIDNEY is registered with ClinicalTrials.gov, NCT03594110. Findings: Between May 15, 2019, and April 16, 2021, 6609 participants were randomly assigned and followed up for a median of 2·0 years (IQR 1·5–2·4). Prespecified subgroupings by primary kidney disease included 2057 (31·1%) participants with diabetic kidney disease, 1669 (25·3%) with glomerular disease, 1445 (21·9%) with hypertensive or renovascular disease, and 1438 (21·8%) with other or unknown causes. Kidney disease progression occurred in 384 (11·6%) of 3304 patients in the empagliflozin group and 504 (15·2%) of 3305 patients in the placebo group (hazard ratio 0·71 [95% CI 0·62–0·81]), with no evidence that the relative effect size varied significantly by primary kidney disease (pheterogeneity=0·62). The between-group difference in chronic eGFR slopes (ie, from 2 months to final follow-up) was 1·37 mL/min per 1·73 m2 per year (95% CI 1·16–1·59), representing a 50% (42–58) reduction in the rate of chronic eGFR decline. This relative effect of empagliflozin on chronic eGFR slope was similar in analyses by different primary kidney diseases, including in explorations by type of glomerular disease and diabetes (p values for heterogeneity all >0·1). Interpretation: In a broad range of patients with chronic kidney disease at risk of progression, including a wide range of non-diabetic causes of chronic kidney disease, empagliflozin reduced risk of kidney disease progression. Relative effect sizes were broadly similar irrespective of the cause of primary kidney disease, suggesting that SGLT2 inhibitors should be part of a standard of care to minimise risk of kidney failure in chronic kidney disease. Funding: Boehringer Ingelheim, Eli Lilly, and UK Medical Research Council

    Vibration Control Using Vibration Energy Transmissibility of Two-Degree-of-Freedom System

    No full text
    This study focuses on the energy transmissibility, which is called coupling loss factor (CLF) in Statistical Energy Analysis (SEA) framework, for two degree of freedom vibration system. The aim of this study is to obtain a new interpretation of the energy transfer viewpoint of the phenomena represented by the two-degree-of-freedom vibration system and to utilize it for vibration control and structural design. In this paper, the energy transfer characteristics of one-degree-of-freedom and two-degree-of-freedom vibration systems are explicitly derived from the equations of motion under broadband excitation through the energy (power) equilibrium and the frequency average concept. And then it is shown that the derived energy transmissibility can be described by a mathematical equation and is a single value. The transmissibility is determined by three parameters, which are the properties concerning each two uncoupled one degree of freedom vibration system, the uncoupled natural angular frequencies, the damping and the coupling properties. Then the energy transmissibility can be easily used for understanding phenomena described by the two degree of freedom systems and for control and design them. Furthermore, as an example of vibration control based on the energy transmissibility, the reduction of engine shake in automobiles is presented, and its effectiveness is compared and discussed with the results in the reference
    corecore