1,123 research outputs found

    Optic flow stabilizes flight in ruby-throated hummingbirds

    Get PDF
    Flying birds rely on visual cues for retinal image stabilization by negating rotation-induced optic flow, the motion of the visual panorama across the retina, through corrective eye and head movements. In combination with vestibular and proprioceptive feedback, birds may also use visual cues to stabilize their body during flight. Here, we test whether artificially induced wide-field motion generated through projected visual patterns elicits maneuvers in body orientation and flight position, in addition to stabilizing vision. To test this hypothesis, we present hummingbirds flying freely within a 1.2 m cylindrical visual arena with a virtual surround rotated at different speeds about its vertical axis. The birds responded robustly to these visual perturbations by rotating their heads and bodies with the moving visual surround, and by adjusting their flight trajectories, following the surround. Thus, similar to insects, hummingbirds appear to use optic flow cues to control flight maneuvers as well as to stabilize their visual inputs

    New approaches to provide feedback from nuclear and covariance data adjustment for effective improvement of evaluated nuclear data files

    Get PDF
    A critical examination of the role of uncertainty assessment, target accuracies, role of integral experiment for validation and, consequently, of data adjustments methods is underway since several years at OECD-NEA, the objective being to provide criteria and practical approaches to use effectively the results of sensitivity analyses and cross section adjustments for feedback to evaluators and experimentalists in order to improve without ambiguities the knowledge of neutron cross sections, uncertainties, and correlations to be used in a wide range of applications and to meet new requirements and constraints for innovative reactor and fuel cycle system design. An approach will be described that expands as much as possible the use in the adjustment procedure of selected integral experiments that provide information on “elementary” phenomena, on separated individual physics effects related to specific isotopes or on specific energy ranges. An application to a large experimental data base has been performed and the results are discussed in the perspective of new evaluation projects like the CIELO initiative

    Optic flow stabilizes flight in ruby-throated hummingbirds

    Get PDF
    Flying birds rely on visual cues for retinal image stabilization by negating rotation-induced optic flow, the motion of the visual panorama across the retina, through corrective eye and head movements. In combination with vestibular and proprioceptive feedback, birds may also use visual cues to stabilize their body during flight. Here, we test whether artificially induced wide-field motion generated through projected visual patterns elicits maneuvers in body orientation and flight position, in addition to stabilizing vision. To test this hypothesis, we present hummingbirds flying freely within a 1.2 m cylindrical visual arena with a virtual surround rotated at different speeds about its vertical axis. The birds responded robustly to these visual perturbations by rotating their heads and bodies with the moving visual surround, and by adjusting their flight trajectories, following the surround. Thus, similar to insects, hummingbirds appear to use optic flow cues to control flight maneuvers as well as to stabilize their visual inputs

    Forest top canopy bacterial communities are influenced by elevation and host tree traits

    Get PDF
    Background: The phyllosphere microbiome is crucial for plant health and ecosystem functioning. While host species play a determining role in shaping the phyllosphere microbiome, host trees of the same species that are subjected to different environmental conditions can still exhibit large degrees of variation in their microbiome diversity and composition. Whether these intra-specific variations in phyllosphere microbiome diversity and composition can be observed over the broader expanse of forest landscapes remains unclear. In this study, we aim to assess the variation in the top canopy phyllosphere bacterial communities between and within host tree species in the temperate European forests, focusing on Fagus sylvatica (European beech) and Picea abies (Norway spruce).Results: We profiled the bacterial diversity, composition, driving factors, and discriminant taxa in the top canopy phyllosphere of 211 trees in two temperate forests, Veluwe National Parks, the Netherlands and Bavarian Forest National Park, Germany. We found the bacterial communities were primarily shaped by host species, and large variation existed within beech and spruce. While we showed that there was a core microbiome in all tree species examined, community composition varied with elevation, tree diameter at breast height, and leaf-specific traits (e.g., chlorophyll and P content). These driving factors of bacterial community composition also correlated with the relative abundance of specific bacterial families.Conclusions: While our results underscored the importance of host species, we demonstrated a substantial range of variation in phyllosphere bacterial diversity and composition within a host species. Drivers of these variations have implications at both the individual host tree level, where the bacterial communities differed based on tree traits, and at the broader forest landscape level, where drivers like certain highly plastic leaf traits can potentially link forest canopy bacterial community variations to forest ecosystem processes. We eventually showed close associations between forest canopy phyllosphere bacterial communities and host trees exist, and the consistent patterns emerging from these associations are critical for host plant functioning

    Modeling MOG Antibody-Associated Disorder and Neuromyelitis Optica Spectrum Disorder in Animal Models: Visual System Manifestations.

    Get PDF
    BACKGROUND AND OBJECTIVES Mechanisms of visual impairment in aquaporin 4 antibody (AQP4-IgG) seropositive neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody (MOG-IgG)-associated disorder (MOGAD) are incompletely understood. The respective impact of optic nerve demyelination and primary and secondary retinal neurodegeneration are yet to be investigated in animal models. METHODS Active MOG35-55 experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6Jrj mice, and monoclonal MOG-IgG (8-18C5, murine), recombinant AQP4-IgG (rAb-53, human), or isotype-matched control IgG (Iso-IgG, human) was administered 10 days postimmunization. Mobility impairment was scored daily. Visual acuity by optomotor reflex and ganglion cell complex thickness (GCC, 3 innermost retinal layers) by optical coherence tomography (OCT) were longitudinally assessed. Histopathology of optic nerve and retina was investigated during presymptomatic, acute, and chronic disease phases for immune cells, demyelination, complement deposition, natural killer (NK) cell, AQP4, and astrocyte involvement, retinal ganglion cells (RGCs), and MĂŒller cell activation. Groups were compared by nonparametric tests with a p value <0.05 indicating statistical significance. RESULTS Visual acuity decreased from baseline to chronic phase in MOG-IgG (mean ± standard error of the mean: 0.54 ± 0.01 to 0.46 ± 0.02 cycles/degree, p < 0.05) and AQP4-IgG EAE (0.54 ± 0.01 to 0.43 ± 0.02, cycles/degree, p < 0.05). Immune cell infiltration of optic nerves started in presymptomatic AQP4-IgG, but not in MOG-IgG EAE (5.85 ± 2.26 vs 0.13 ± 0.10 macrophages/region of interest [ROI] and 1.88 ± 0.63 vs 0.15 ± 0.06 T cells/ROI, both p < 0.05). Few NK cells, no complement deposition, and stable glial fibrillary acid protein and AQP4 fluorescence intensity characterized all EAE optic nerves. Lower GCC thickness (Spearman correlation coefficient r = -0.44, p < 0.05) and RGC counts (r = -0.47, p < 0.05) correlated with higher mobility impairment. RGCs decreased from presymptomatic to chronic disease phase in MOG-IgG (1,705 ± 51 vs 1,412 ± 45, p < 0.05) and AQP4-IgG EAE (1,758 ± 14 vs 1,526 ± 48, p < 0.01). MĂŒller cell activation was not observed in either model. DISCUSSION In a multimodal longitudinal characterization of visual outcome in animal models of MOGAD and NMOSD, differential retinal injury and optic nerve involvement were not conclusively clarified. Yet optic nerve inflammation was earlier in AQP4-IgG-associated pathophysiology. Retinal atrophy determined by GCC thickness (OCT) and RGC counts correlating with mobility impairment in the chronic phase of MOG-IgG and AQP4-IgG EAE may serve as a generalizable marker of neurodegeneration

    Physiological and biochemical responses of Eucalyptus seedlings to hypoxia

    Get PDF
    International audienceAbstractKey messageHypoxia promoted distinct changes in the levels of hormones, amino acids and organic acids in the roots and shoots of a seedling from 2Eucalyptusclones. These results indicate that modulation of hormone production, as well as specific chemical constituents associated with primary metabolism, contributes to the regulation of growth ofEucalyptusseedlings under hypoxic conditions.ContextAlthough floods in areas under Eucalyptus cultivation in Brazil negatively affect plant growth, chemical markers and/or indicators of hypoxia contributes to the regulation.sAimsThis study aimed to evaluate the hormonal and metabolic alterations induced by hypoxia on seedling growth.MethodsSeedlings of Eucalyptus urograndis clones VCC 975 and 1004 were grown in liquid solution and submitted to bubbling with air or with nitrogen. Levels of indol-3-acetic acid (IAA), abscisic acid (ABA), ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), primary metabolite profile and photosynthetic parameters were evaluated after fourteen days.ResultsHypoxia did not affect shoot dry mass of the seedlings. However, it decreased stomatal conductance and photosynthetic CO2 assimilation rate, and increased levels of ABA in the shoot. Hypoxia greatly reduced the dry mass and volume of roots, concomitantly with higher ACC and ethylene production. Moreover, hypoxia promoted distinct changes in IAA levels, and in amino acid and organic acid metabolism in roots and shoots.ConclusionThe biosynthesis of ABA, ethylene and IAA and its quantity in root tissues indicates the regulation of metabolism in response to hypoxia in Eucalyptus clones

    The size evolution of galaxies since z~3: combining SDSS, GEMS and FIRES

    Get PDF
    We present the evolution of the luminosity-size and stellar mass-size relations of luminous (L_V>3.4x10^10h_70^-2L_sun) and of massive (M_*>3x10^10h_70^-2M_sun) galaxies in the last ~11 Gyr. We use very deep near-infrared images of the Hubble Deep Field-South and the MS1054-03 field in the J_s, H and K_s bands from FIRES to retrieve the sizes in the optical rest-frame for galaxies with z>1. We combine our results with those from GEMS at 0.2<z<1 and SDSS at z~0.1 to achieve a comprehensive picture of the optical rest-frame size evolution from z=0 to z=3. Galaxies are differentiated according to their light concentration using the Sersic index n. For less concentrated objects, the galaxies at a given luminosity were typically ~3+-0.5 (+-2 sigma) times smaller at z~2.5 than those we see today. The stellar mass-size relation has evolved less: the mean size at a given stellar mass was \~2+-0.5 times smaller at z~2.5, evolving proportional to (1+z)^{-0.40+-0.06}. Simple scaling relations between dark matter halos and baryons in a hierarchical cosmogony predict a stronger (although consistent within the error bars) than observed evolution of the stellar mass-size relation. The observed luminosity-size evolution out to z~2.5 matches well recent infall model predictions for Milky-Way type objects. For low-n galaxies, the evolution of the stellar mass-size relation would follow naturally if the individual galaxies grow inside-out. For highly concentrated objects, the situation is as follows: at a given luminosity, these galaxies were ~2.7+-1.1 times smaller at z~2.5 (or put differently, were typically ~2.2+-0.7 mag brighter at a given size than they are today), and at a given stellar mass the size has evolved proportional to (1+z)^{-0.45+-0.10}.Comment: Accepted for publication in ApJ. The new version includes several improvements: much accurate size estimations and a better completeness and robustness analysis. Tables of data are included. 29 pages and 14 figures (one low resolution

    Molecular epidemiology of residual Plasmodium vivax transmission in a paediatric cohort in Solomon Islands

    Get PDF
    Background: Following the scale-up of intervention efforts, malaria burden has decreased dramatically in Solomon Islands (SI). Submicroscopic and asymptomatic Plasmodium vivax infections are now the major challenge for malaria elimination in this country. Since children have higher risk of contracting malaria, this study investigated the dynamics of Plasmodium spp. infections among children including the associated risk factors of residual P. vivax burden. Methods: An observational cohort study was conducted among 860 children aged 0.5–12 years in Ngella (Central Islands Province, SI). Children were monitored by active and passive surveillances for Plasmodium spp. infections and illness. Parasites were detected by quantitative real-time PCR (qPCR) and genotyped. Comprehensive statistical analyses of P. vivax infection prevalence, molecular force of blood stage infection (molFOB) and infection density were conducted. Results: Plasmodium vivax infections were common (overall prevalence: 11.9%), whereas Plasmodium falciparum infections were rare (0.3%) but persistent. Although children acquire an average of 1.1 genetically distinct P. vivax blood-stage infections per year, there was significant geographic heterogeneity in the risks of P. vivax infections across Ngella (prevalence: 1.2–47.4%, p < 0.01; molFOB: 0.05–4.6/year, p < 0.01). Malaria incidence was low (IR: 0.05 episodes/year-at-risk). Age and measures of high exposure were the key risk factors for P. vivax infections and disease. Malaria incidence and infection density decreased with age, indicating significant acquisition of immunity. G6PD deficient children (10.8%) that did not receive primaquine treatment had a significantly higher prevalence (aOR: 1.77, p = 0.01) and increased risk of acquiring new bloodstage infections (molFOB aIRR: 1.51, p = 0.03), underscoring the importance of anti-relapse treatment. Conclusion: Residual malaria transmission in Ngella exhibits strong heterogeneity and is characterized by a high proportion of submicroscopic and asymptomatic P. vivax infections, alongside sporadic P. falciparum infections. Implementing an appropriate primaquine treatment policy to prevent P. vivax relapses and specific targeting of control interventions to high risk areas will be required to accelerate ongoing control and elimination activities
    • 

    corecore