11 research outputs found

    Novel Approaches to Air Pollution Exposure and Clinical Outcomes Assessment in Environmental Health Studies

    No full text
    An accurate assessment of pollutants’ exposure and precise evaluation of the clinical outcomes pose two major challenges to the contemporary environmental health research. The common methods for exposure assessment are based on residential addresses and are prone to many biases. Pollution levels are defined based on monitoring stations that are sparsely distributed and frequently distanced far from residential addresses. In addition, the degree of an association between outdoor and indoor air pollution levels is not fully elucidated, making the exposure assessment all the more inaccurate. Clinical outcomes’ assessment, on the other hand, mostly relies on the access to medical records from hospital admissions and outpatients’ visits in clinics. This method differentiates by health care seeking behavior and is therefore, problematic in evaluation of an onset, duration, and severity of an outcome. In the current paper, we review a number of novel solutions aimed to mitigate the aforementioned biases. First, a hybrid satellite-based modeling approach provides daily continuous spatiotemporal estimations with improved spatial resolution of 1 × 1 km2 and 200 × 200 m2 grid, and thus allows a more accurate exposure assessment. Utilizing low-cost air pollution sensors allowing a direct measurement of indoor air pollution levels can further validate these models. Furthermore, the real temporal-spatial activity can be assessed by GPS tracking devices within the individuals’ smartphones. A widespread use of smart devices can help with obtaining objective measurements of some of the clinical outcomes such as vital signs and glucose levels. Finally, human biomonitoring can be efficiently done at a population level, providing accurate estimates of in-vivo absorbed pollutants and allowing for the evaluation of body responses, by biomarkers examination. We suggest that the adoption of these novel methods will change the research paradigm heavily relying on ecological methodology and support development of the new clinical practices preventing adverse environmental effects on human health

    The Foreground-Background Queue: a survey

    No full text
    Computer systems researchers have begun to apply the Foreground-Background (FB) scheduling discipline to a variety of applications, and as a result, there has been a resurgence in theoretical research studying FB. In this paper, we bring together results from both of these research streams to provide a survey of state-of-the-art theoretical results characterizing the performance of FB. Our emphasis throughout is on the impact of these results on computer systems. © 2007 Elsevier Ltd. All rights reserved

    Serum Cholinesterase Activities Distinguish between Stroke Patients and Controls and Predict 12-Month Mortality

    No full text
    To date there is no diagnostic biomarker for mild stroke, although elevation of inflammatory biomarkers has been reported at early stages. Previous studies implicated acetylcholinesterase (AChE) involvement in stroke, and circulating AChE activity reflects inflammatory response, since acetylcholine suppresses inflammation. Therefore, carriers of polymorphisms that modify cholinergic activity should be particularly susceptible to inflammatory damage. Our study sought diagnostic values of AChE and Cholinergic Status (CS, the total capacity for acetylcholine hydrolysis) in suspected stroke patients. For this purpose, serum cholinesterase activities, butyrylcholinesterase-K genotype and inflammatory biomarkers were determined in 264 ischemic stroke patients and matched controls during the acute phase. AChE activities were lower (P < 0.001), and butyrylcholinesterase activities were higher in patients than in controls (P = 0.004). When normalized to sampling time from stroke occurrence, both cholinergic parameters were correlated with multiple inflammatory biomarkers, including fibrinogen, interleukin-6 and C-reactive protein (r = 0.713, r = 0.607; r = 0.421, r = 0.341; r = 0.276, r = 0.255; respectively; all P values < 0.001). Furthermore, very low AChE activities predicted subsequent nonsurvival (P = 0.036). Also, carriers of the unstable butyrylcholinesterase-K variant were more abundant among patients than controls, and showed reduced activity (P < 0.001). Importantly, a cholinergic score combining the two cholinesterase activities discriminated between 94.3% matched pairs of patients and controls, compared with only 75% for inflammatory measures. Our findings present the power of circulation cholinesterase measurements as useful early diagnostic tools for the occurrence of stroke. Importantly, these were considerably more distinctive than the inflammatory biomarkers, albeit closely associated with them, which may open new venues for stroke diagnosis and treatment

    Queueing theory in manufacturing: A survey

    No full text
    corecore