832 research outputs found

    Arabic spam tweets classification using deep learning

    Get PDF
    With the increased use of social network sites, such as Twitter, attackers exploit these platforms to spread counterfeit content. Such content can be fake advertisements or illegal content. Classifying such content is a challenging task, especially in Arabic. The Arabic language has a complex structure and makes classification tasks more difficult. This paper presents an approach to classifying Arabic tweets using classical machine learning (non-deep machine learning) and deep learning techniques. Tweets corpus were collected through Twitter API and labelled manually to get a reliable dataset. For an efficient classifier, feature extraction is applied to the corpus dataset. Then, two learning techniques are used for each feature extraction technique on the created dataset using N-gram models (uni-gram, bi-gram, and char-gram). The applied classical machine learning algorithms are support vector machines, neural networks, logistics regression, and naïve Bayes. Global vector (GloVe) and fastText learning models are utilised for the deep learning approaches. The Precision, Recall, and F1-score are the suggested performance measures calculated in this paper. Afterwards, the dataset is increased using the synthetic minority oversampling technique class to create a balanced dataset. After applying the classical machine learning models, the experimental results show that the neural network algorithm outperforms the other algorithms. Moreover, the GloVe outperforms the fastText model for the deep learning approach

    Induction of controlled hypoxic pregnancy in large mammalian species.

    Get PDF
    Progress in the study of pregnancy complicated by chronic hypoxia in large mammals has been held back by the inability to measure long-term significant reductions in fetal oxygenation at values similar to those measured in human pregnancy complicated by fetal growth restriction. Here, we introduce a technique for physiological research able to maintain chronically instrumented maternal and fetal sheep for prolonged periods of gestation under significant and controlled isolated chronic hypoxia beyond levels that can be achieved by habitable high altitude. This model of chronic hypoxia permits measurement of materno-fetal blood gases as the challenge is actually occurring. Chronic hypoxia of this magnitude and duration using this model recapitulates the significant asymmetric growth restriction, the pronounced cardiomyopathy, and the loss of endothelial function measured in offspring of high-risk pregnancy in humans, opening a new window of therapeutic research.This work was supported by The British Heart Foundation and The Royal Society. DG is Professor of Cardiovascular Physiology & Medicine at the Department of Physiology Development & Neuroscience at the University of Cambridge, Professorial Fellow and Director of Studies in Medicine at Gonville & Caius College, a Lister Institute Fellow and a Royal Society Wolfson Research Merit Award Holder.This is the final version of the article. It was first available from the American Physiological Society via http://dx.doi.org/10.14814/phy2.1261

    Altered Skeletal Muscle Lipase Expression and Activity Contribute to Insulin Resistance in Humans

    Get PDF
    International audienceOBJECTIVE: Insulin resistance is associated with elevated content of skeletal muscle lipids, including triacylglycerols (TAGs) and diacylglycerols (DAGs). DAGs are by-products of lipolysis consecutive to TAG hydrolysis by adipose triglyceride lipase (ATGL) and are subsequently hydrolyzed by hormone-sensitive lipase (HSL). We hypothesized that an imbalance of ATGL relative to HSL (expression or activity) may contribute to DAG accumulation and insulin resistance. RESEARCH DESIGN AND METHODS: We first measured lipase expression in vastus lateralis biopsies of young lean (n = 9), young obese (n = 9), and obese-matched type 2 diabetic (n = 8) subjects. We next investigated in vitro in human primary myotubes the impact of altered lipase expression/activity on lipid content and insulin signaling. RESULTS: Muscle ATGL protein was negatively associated with whole-body insulin sensitivity in our population (r = -0.55, P = 0.005), whereas muscle HSL protein was reduced in obese subjects. We next showed that adenovirus-mediated ATGL overexpression in human primary myotubes induced DAG and ceramide accumulation. ATGL overexpression reduced insulin-stimulated glycogen synthesis (-30%, P < 0.05) and disrupted insulin signaling at Ser1101 of the insulin receptor substrate-1 and downstream Akt activation at Ser473. These defects were fully rescued by nonselective protein kinase C inhibition or concomitant HSL overexpression to restore a proper lipolytic balance. We show that selective HSL inhibition induces DAG accumulation and insulin resistance. CONCLUSIONS: Altogether, the data indicate that altered ATGL and HSL expression in skeletal muscle could promote DAG accumulation and disrupt insulin signaling and action. Targeting skeletal muscle lipases may constitute an interesting strategy to improve insulin sensitivity in obesity and type 2 diabetes

    Intervention against hypertension in the next generation programmed by developmental hypoxia.

    Get PDF
    Evidence derived from human clinical studies and experimental animal models shows a causal relationship between adverse pregnancy and increased cardiovascular disease in the adult offspring. However, translational studies isolating mechanisms to design intervention are lacking. Sheep and humans share similar precocial developmental milestones in cardiovascular anatomy and physiology. We tested the hypothesis in sheep that maternal treatment with antioxidants protects against fetal growth restriction and programmed hypertension in adulthood in gestation complicated by chronic fetal hypoxia, the most common adverse consequence in human pregnancy. Using bespoke isobaric chambers, chronically catheterized sheep carrying singletons underwent normoxia or hypoxia (10% oxygen [O2]) ± vitamin C treatment (maternal 200 mg.kg-1 IV daily) for the last third of gestation. In one cohort, the maternal arterial blood gas status, the value at which 50% of the maternal hemoglobin is saturated with oxygen (P50), nitric oxide (NO) bioavailability, oxidative stress, and antioxidant capacity were determined. In another, naturally delivered offspring were raised under normoxia until early adulthood (9 months). Lambs were chronically instrumented and cardiovascular function tested in vivo. Following euthanasia, femoral arterial segments were isolated and endothelial function determined by wire myography. Hypoxic pregnancy induced fetal growth restriction and fetal oxidative stress. At adulthood, it programmed hypertension by enhancing vasoconstrictor reactivity and impairing NO-independent endothelial function. Maternal vitamin C in hypoxic pregnancy improved transplacental oxygenation and enhanced fetal antioxidant capacity while increasing NO bioavailability, offsetting constrictor hyper-reactivity and replenishing endothelial function in the adult offspring. These discoveries provide novel insight into mechanisms and interventions against fetal growth restriction and adult-onset programmed hypertension in an animal model of complicated pregnancy in a species of similar temporal developmental milestones to humans.British Heart Foundatio
    corecore