30 research outputs found

    Absorption, metabolism and excretion of cranberry (poly)phenols in humans: a dose response study and assessment of inter-individual variability

    Get PDF
    The beneficial health effects of cranberries have been attributed to their (poly)phenol content. Recent studies have investigated the absorption, metabolism and excretion of cranberry (poly)phenols; however, little is known about whether they follow a dose response in vivo at different levels of intake. An acute double-blind randomized controlled trial in 10 healthy men with cranberry juices containing 409, 787, 1238, 1534 and 1910 mg total (poly)phenols was performed. Blood and urine were analyzed by UPLC-Q-TOF-MS. Sixty metabolites were identified in plasma and urine including cinnamic acids, dihydrocinnamic, flavonols, benzoic acids, phenylacetic acids, benzaldehydes, valerolactones, hippuric acids, catechols, and pyrogallols. Total plasma, but not excreted urinary (poly)phenol metabolites, exhibited a linear dose response (r2 = 0.74, p < 0.05), driven by caffeic acid 4-O-ß-d-glucuronide, quercetin-3-O-ß-d-glucuronide, ferulic acid 4-O-ß-d-glucuronide, 2,5-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid, ferulic acid, caffeic acid 3-O-ß-d-glucuronide, sinapic acid, ferulic acid 4-O-sulfate, 3-hydroxybenzoic acid, syringic acid, vanillic acid-4-O-sulfate, (4R)-5-(3′-hydroxyphenyl)-γ-valerolactone-4′-O-sulfate, 4-methylgallic acid-3-O-sulfate, and isoferulic acid 3-O-sulfate (all r2 ≥ 0.89, p < 0.05). Inter-individual variability of the plasma metabolite concentration was broad and dependent on the metabolite. Herein, we show that specific plasma (poly)phenol metabolites are linearly related to the amount of (poly)phenols consumed in cranberry juice. The large inter-individual variation in metabolite profile may be due to variations in the gut microbiome

    Circulating anthocyanin metabolites mediate vascular benefits of blueberries:insights from randomized controlled trials, metabolomics, and nutrigenomics

    Get PDF
    Potential health benefits of blueberries may be due to vascular effects of anthocyanins which predominantly circulate in blood as phenolic acid metabolites. We investigated which role blueberry anthocyanins and circulating metabolites play in mediating improvements in vascular function and explore potential mechanisms using metabolomics and nutrigenomics. Purified anthocyanins exerted a dose-dependent improvement of endothelial function in healthy humans, as measured by flow-mediated dilation (FMD). The effects were similar to those of blueberries containing similar amounts of anthocyanins while control drinks containing fiber, minerals, or vitamins had no significant effect. Daily 1-month blueberry consumption increased FMD and lowered 24h-ambulatory-systolic-blood-pressure. Of the 63 anthocyanin plasma metabolites quantified, 14 and 17 correlated with acute and chronic FMD improvements, respectively. Injection of these metabolites improved FMD in mice. Daily blueberry consumption led to differential expression (>1.2-fold) of 608 genes and 3 microRNAs, with Mir-181c showing a 13-fold increase in peripheral blood mononuclear cells. Patterns of 13 metabolites were independent predictors of gene expression changes and pathway enrichment analysis revealed significantly modulated biological processes involved in cell adhesion, migration, immune response, and cell differentiation. Our results identify anthocyanin metabolites as major mediators of vascular bioactivities of blueberries and changes of cellular gene programs

    Consumption of Stilbenes and Flavonoids is Linked to Reduced Risk of Obesity Independently of Fiber Intake

    Get PDF
    BACKGROUND: Polyphenol consumption is implicated in gut microbiome composition and improved metabolic outcomes, but it is unclear whether the effect is independent of dietary fiber. METHODS: We investigated the links between (poly)phenol intake, gut microbiome composition (16s RNA) and obesity independently of fiber intake in UK women (n = 1810) and in a small group of UK men (n = 64). RESULTS: (Poly)phenol intakes correlated with microbiome alpha diversity (Shannon Index) after adjusting for confounders and fiber intake. Moreover, flavonoid intake was significantly correlated with the abundance of Veillonella, (a genus known to improve physical performance), and stilbene intake with that of butyrate-producing bacteria (Lachnospira and Faecalibacterium). Stilbene and flavonoid intake also correlated with lower odds of prevalent obesity (Stilbenes: Odds Ratio (95% Confidence Interval) (OR(95%CI)) = 0.80 (0.73, 0.87), p = 4.90 × 10-7; Flavonoids: OR(95%CI) = 0.77 (0.65, 0.91), p = 0.002). Formal mediation analyses revealed that gut microbiome mediates ~11% of the total effect of flavonoid and stilbene intake on prevalent obesity. CONCLUSIONS: Our findings highlight the importance of (poly)phenol consumption for optimal human health

    Meta-Analysis of the Effects of Foods and Derived Products Containing Ellagitannins and Anthocyanins on Cardiometabolic Biomarkers: Analysis of Factors Influencing Variability of the Individual Responses

    Get PDF
    peer-reviewedUnderstanding interindividual variability in response to dietary polyphenols remains essential to elucidate their effects on cardiometabolic disease development. A meta-analysis of 128 randomized clinical trials was conducted to investigate the effects of berries and red grapes/wine as sources of anthocyanins and of nuts and pomegranate as sources of ellagitannins on a range of cardiometabolic risk biomarkers. The potential influence of various demographic and lifestyle factors on the variability in the response to these products were explored. Both anthocyanin- and ellagitannin-containing products reduced total-cholesterol with nuts and berries yielding more significant effects than pomegranate and grapes. Blood pressure was significantly reduced by the two main sources of anthocyanins, berries and red grapes/wine, whereas waist circumference, LDL-cholesterol, triglycerides, and glucose were most significantly lowered by the ellagitannin-products, particularly nuts. Additionally, we found an indication of a small increase in HDL-cholesterol most significant with nuts and, in flow-mediated dilation by nuts and berries. Most of these effects were detected in obese/overweight people but we found limited or non-evidence in normoweight individuals or of the influence of sex or smoking status. The effects of other factors, i.e., habitual diet, health status or country where the study was conducted, were inconsistent and require further investigation.This article is based upon work from COST Action FA1403—POSITIVe “Interindividual variation in response to consumption of plant food bioactives and determinants involved” supported by COST (European Cooperation in Science and Technology, http://www.cost.eu/). The authors thank the financial support of the COST Action FA1403 “POSITIVe” to conduct a short-term scientific mission to K.C. at CEBAS-CSIC (A.G.-S. and M.T.G.-C.) during which the data analysis was performed

    Improving the reporting quality of intervention trials addressing the inter-individual variability in response to the consumption of plant bioactives: quality index and recommendations

    Get PDF
    PURPOSE: The quality of the study design and data reporting in human trials dealing with the inter-individual variability in response to the consumption of plant bioactives is, in general, low. There is a lack of recommendations supporting the scientific community on this topic. This study aimed at developing a quality index to assist the assessment of the reporting quality of intervention trials addressing the inter-individual variability in response to plant bioactive consumption. Recommendations for better designing and reporting studies were discussed. METHODS: The selection of the parameters used for the development of the quality index was carried out in agreement with the scientific community through a survey. Parameters were defined, grouped into categories, and scored for different quality levels. The applicability of the scoring system was tested in terms of consistency and effort, and its validity was assessed by comparison with a simultaneous evaluation by experts' criteria. RESULTS: The "POSITIVe quality index" included 11 reporting criteria grouped into four categories (Statistics, Reporting, Data presentation, and Individual data availability). It was supported by detailed definitions and guidance for their scoring. The quality index score was tested, and the index demonstrated to be valid, reliable, and responsive. CONCLUSIONS: The evaluation of the reporting quality of studies addressing inter-individual variability in response to plant bioactives highlighted the aspects requiring major improvements. Specific tools and recommendations favoring a complete and transparent reporting on inter-individual variability have been provided to support the scientific community on this field

    Plasma and Urinary Phenolic Profiles after Acute and Repetitive Intake of Wild Blueberry

    No full text
    Recent studies have shown that blueberries may have cardiovascular and cognitive health benefits. In this work, we investigated the profile of plasma and urine (poly)phenol metabolites after acute and daily consumption of wild blueberries for 30 days in 18 healthy men. The inter-individual variability in plasma and urinary polyphenol levels was also investigated. Blood samples were collected at baseline and 2 h post-consumption on day 1 and day 30. Twenty-four-hour urine was also collected on both days. A total of 61 phenolic metabolites were quantified in plasma at baseline, of which 43 increased after acute or chronic consumption of blueberries over one month. Benzoic and catechol derivatives represented more than 80% of the changes in phenolic profile after 2 h consumption on day 1, whereas hippuric and benzoic derivatives were the major compounds that increased at 0 and 2 h on day 30, respectively. The total (poly)phenol urinary excretion remained unchanged after 30 days of wild blueberry intake. The inter-individual variability ranged between 40%–48% in plasma and 47%–54% in urine. Taken together, our results illustrate that blueberry (poly)phenols are absorbed and extensively metabolized by phase II enzymes and by the gut microbiota, leading to a whole array of metabolites that may be responsible for the beneficial effects observed after blueberry consumption

    Plasma and Urinary Phenolic Profiles after Acute and Repetitive Intake of Wild Blueberry

    No full text
    Recent studies have shown that blueberries may have cardiovascular and cognitive health benefits. In this work, we investigated the profile of plasma and urine (poly)phenol metabolites after acute and daily consumption of wild blueberries for 30 days in 18 healthy men. The inter-individual variability in plasma and urinary polyphenol levels was also investigated. Blood samples were collected at baseline and 2 h post-consumption on day 1 and day 30. Twenty-four-hour urine was also collected on both days. A total of 61 phenolic metabolites were quantified in plasma at baseline, of which 43 increased after acute or chronic consumption of blueberries over one month. Benzoic and catechol derivatives represented more than 80% of the changes in phenolic profile after 2 h consumption on day 1, whereas hippuric and benzoic derivatives were the major compounds that increased at 0 and 2 h on day 30, respectively. The total (poly)phenol urinary excretion remained unchanged after 30 days of wild blueberry intake. The inter-individual variability ranged between 40%–48% in plasma and 47%–54% in urine. Taken together, our results illustrate that blueberry (poly)phenols are absorbed and extensively metabolized by phase II enzymes and by the gut microbiota, leading to a whole array of metabolites that may be responsible for the beneficial effects observed after blueberry consumption
    corecore