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ABSTRACT  1 

Potential health benefits of blueberries may be due to vascular effects of anthocyanins which 2 

predominantly circulate in blood as phenolic acid metabolites. We investigated which role 3 

blueberry anthocyanins and circulating metabolites play in mediating improvements in  4 

vascular function and explore potential mechanisms using metabolomics and nutrigenomics. 5 

Purified anthocyanins exerted a dose-dependent improvement of endothelial function in 6 

healthy humans, as measured by flow-mediated dilation (FMD). The effects were similar to 7 

those of blueberries containing similar amounts of anthocyanins while control drinks 8 

containing fiber, minerals, or vitamins had no significant effect. Daily 1-month blueberry 9 

consumption increased FMD and lowered 24h-ambulatory-systolic-blood-pressure. Of the 63 10 

anthocyanin plasma metabolites quantified,  14 and 17 correlated with acute and chronic 11 

FMD improvements, respectively. Injection of these metabolites improved FMD in mice. 12 

Daily blueberry consumption led to differential expression (>1.2-fold) of 608 genes and 3 13 

microRNAs, with Mir-181c showing a 13-fold increase in peripheral blood mononuclear 14 

cells. Patterns of 13 metabolites were independent predictors of gene expression changes and 15 

pathway enrichment analysis revealed significantly modulated biological processes involved 16 

in cell adhesion, migration, immune response, and cell differentiation. Our results identify 17 

anthocyanin metabolites as major mediators of vascular bioactivities of blueberries and 18 

changes of cellular gene programs.  19 

 20 
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INTRODUCTION 22 

Cardiovascular aging is a dynamic process that goes along with endothelial dysfunction, 23 

intimal hyperplasia, and arterial stiffness and may lead to arteriosclerosis and 24 

atherosclerosis.(1) In fact, the prevalence of coronary, peripheral, and cerebrovascular artery 25 

disease increase with age, and is in the order of 25% in individuals older than 75 years, and 26 

accounts for the majority of invalidity and mortality in older people.(2) Nutritional 27 

interventions are promising approaches to slow cardiovascular aging.(3, 4) The protective 28 

effects of these approaches including the Mediterranean diet may be mediated by a high fruit 29 

and vegetable intake and novel food bioactives consumed along with them.(3, 5) A growing 30 

body of nutritional science highlights the complex mechanisms and pleiotropic pathways of 31 

cardiometabolic effects of different foods to support healthy cardiovascular aging.(3) 32 

Therefore, there is a growing need to generate robust scientific evidence on the mechanistic 33 

and clinical effects of specific foods and in particular the role of bioactive compounds in 34 

them that may mediate the effects.(7) To be able to understand the mechanisms-of-action it is 35 

paramount to identify which bioactive compounds in fruits and vegetables are responsible for 36 

such beneficial effects and demonstrate causality using accredited endpoints and understand 37 

how such compounds are absorbed, distributed, metabolized, and excreted in healthy humans. 38 

To date, the most promising classes of food bioactives present in fruits and vegetables are 39 

polyphenols.(8, 9)  40 

Blueberries are rich in polyphenols, in particular anthocyanins, but also contain other 41 

phenolic compounds in smaller amounts such as procyanidins, flavonols and phenolic acids, 42 

as well as being a rich source of fiber, vitamins, and minerals.(10) Blueberries have initially 43 

been investigated due to their potential beneficial effects on age-dependent decline in 44 

cognitive function(11) but were recently shown to improve cardiovascular function.(12) Data 45 

from the Nurses’ Health Study II demonstrated that a high intake of blueberries and 46 
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strawberries and the high intake of anthocyanins associated with it (as calculated based on 47 

food frequency questionnaires) was inversely associated with the risk of myocardial 48 

infarction.(13) While these data underscore potential real world relevance that anthocyanin 49 

intake with blueberries could lower cardiovascular risk, epidemiological data inherently only 50 

provide associative evidence and are further limited by the lack of biomarkers of intake. 51 

Causality between anthocyanin intake in berries and cardiovascular benefits in healthy 52 

humans has not been established so far. Furthermore, the biological mechanisms-of-action 53 

are not fully understood and this may be due to the fact that anthocyanins are not present in 54 

circulation in relevant amounts but rather as low molecular weight phenolic acid compounds 55 

which are the result of chemical and microbial degradation (14, 15). However, the role of the 56 

circulating metabolites that reach the target organs (cardiovascular system) and can, 57 

therefore, only feasibly be regarded as the molecules causing the biological effects is not 58 

defined so far.(9)  59 

As depicted in the graphical abstract, the aims of this work were to investigate which role 60 

anthocyanins and their circulating metabolites play in blueberry related vascular benefits, 61 

evaluate potential chronic effects, and explore their mechanisms-of-action.62 
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METHODS 63 

Human Studies 64 

Four studies were conducted in healthy male volunteers (see Supplementary FIGUREs 1-4 65 

for CONSORT study flow diagrams and study protocols). 66 

Human Study 1: In a double-blind, 5-arm randomized crossover controlled study, healthy 67 

volunteers (n=5) received the 5 treatments in random order on 5 different days separated by 68 

one week of washout: control drink, control drink with fiber, control drink plus a mix of 69 

minerals and vitamins, pure ACN (total ACN content of 160 mg, (Medox, Norway)), or a 70 

wild blueberry drink, made of 11 g of freeze-dried wild blueberry powder (Wild Blueberry 71 

Association of North America) dissolved in 500 ml low nitrate water (TABLE 1). The 72 

amounts of fibre, minerals, vitamins, and ACN were similar to the amounts present in the 73 

wild blueberry drink. The control was matched for flavor and color. Flow-mediated 74 

vasodilation (FMD) was measured before (0 h) and at 1, 2, and 6 h post consumption. 75 

Human Study 2: To investigate the dose-response of ACN, a randomized, controlled double-76 

blind crossover trial was conducted (n=10). FMD was measured at baseline before (0 h), at 2, 77 

and 6 h post consumption of ACN capsules (0 [control], 80, 160, 240, 320, or 480 mg ACN) 78 

on 6 different days with one week wash-out between study days.  79 

Human Study 3: An uncontrolled, single arm, single blind pilot study was performed to 80 

investigate the timecourse of the chronic effects of wild blueberry on FMD. Volunteers (n=5) 81 

had 11g of wild blueberry powder, equivalent to 100g fresh wild blueberries, and containing 82 

362mg total (poly)phenols dissolved in 500 ml water bi-daily over 28 days, and FMD was 83 

measured at baseline, day 7, 14, 21, and 28. 84 

Human Study 4: An acute-on-chronic 2-armed, double-blind, parallel randomized controlled 85 

trial was conducted (n=40, 20 in each arm) comparing effects of wild blueberry drink (11 g 86 

wild blueberry powder, bi-daily) with matched control drinks (11 g powder, bi-daily) over 28 87 
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days. The primary outcome was improvement in FMD. Secondary endpoints were pulse-88 

wave-velocity (PWV) and aortic augmentation index (AIX). and 24h-ambulatory-blood-89 

pressure (BP) was taken in a sub-population n=22). Measurements were taken on day 1 90 

(baseline) and after 28 bi-daily consumption at 0 and 2 h. Blood samples were drawn at all 91 

timepoints to measure plasma blueberry (poly)phenols and their metabolites. Blood lipids 92 

(triglycerides, total cholesterol, HDL, LDL), glucose and routine clinical lab parameters were 93 

also determined. To explore potential mechanism-of-action, mRNA and miRNA analyses 94 

were performed on peripheral blood mononuclear cells (PBMC) isolated from blood samples 95 

that were collected after an overnight fasting period from 10 volunteers at the beginning and 96 

the end of the 28-day period of blueberry consumption. 97 

 98 

Animal study 99 

To prove the bioactivity of circulating phenolic acid metabolites, a 3-armed randomized 100 

double-blinded crossover study was carried out in ten 6-week old male C57BL/6 mice with a 101 

7-day wash-out period. The interventions were plasma (poly)phenol metabolite mixes 102 

comprising of metabolites that correlated with human FMD acutely, chronically (adjusted for 103 

human equivalent dose according to the FDA guidelines (16); TABLE 2B), and vehicle 104 

control (0.9% saline solution matched for methanol content at 5.8%). Mice were anesthetized 105 

with isofluran, and FMD measured as previously published(17) before and after blinded 106 

administration of 100 μl through intracardiac injection. The analyses of ultrasound images 107 

were performed by an operator blinded to allocation of treatments. The metabolites were 108 

purchased or synthesized(18), dissolved in methanol and diluted with saline. Animal 109 

procedures were approved by the local authorities (84-02.04.2014.A312) at Duesseldorf 110 

University.  111 

 112 
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Vascular measurements 113 

All vascular measures were performed by a trained researcher in a temperature-controlled 114 

room after a period of 15 minutes rest as detailed below. FMD of the brachial artery was 115 

measured as previously described(19) using a 12 MHz transducer (Vivid I, GE Healthcare, 116 

Berlin, Germany) with automatic edge-detection software (Brachial Analyzer, Medical 117 

Imaging Applications, Iowa City, IA, USA). A single trained operator performed the analysis 118 

of all images within a single study. Office BP (mean of 2nd and 3rd measurements) was taken 119 

using an automated clinical digital sphygmomanometer (Dynamap, Tampa, FL, USA).  24 h 120 

ambulatory BP measurements were performed on day 1 and day 28, using a Tonoport V 121 

monitor (GE Healthcare, Berlin, Germany). PWV and AIX were measured by applanation 122 

tonometry using the SphygmoCor® (SMART medical, Gloucestershire, UK) system 123 

determined from measurements taken at the carotid and femoral artery as previously 124 

described.(4)  125 

 126 

Biochemical analysis 127 

The blood samples collected in EDTA/heparin tubes were spun (1,700xg; 15 min; 4ºC) 128 

immediately after collection. Samples for (poly)phenol analysis were spiked with 2% formic 129 

acid. All samples were aliquoted and frozen at -80°C until analysis. Screening clinical 130 

parameters including total, LDL and HDL-cholesterol, triglycerides (enzymatic photometric 131 

assay; RocheDiagnostics), HbA1c, glucose (hexokinase assay) and whole blood count (flow 132 

cytometry; Sysmex) were measured using standard techniques by the Institute for Clinical 133 

Chemistry, University Hospital Düsseldorf, Germany. 134 

 135 

Nutrient and (poly)phenol analysis of wild blueberry interventions 136 
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Nutrient analysis was performed by Medallion Labs (Minneapolis, US) using standard 137 

procedures. (Poly)phenol analysis of blueberry interventions was performed as previously 138 

described.(10) 139 

UPLC-Q-TOF MS analysis of plasma (poly)phenols 140 

Plasma and urinary analysis of (poly)phenol metabolites was performed using microelution 141 

solid phase extraction coupled with UPLC-Q-TOF MS and authentic standards for 142 

quantification as previously described.(20)  143 

 144 

Gene expression analyses 145 

Peripheral blood mononuclear cells (PBMC) isolation: PBMCs were isolated from whole 146 

blood using BD Vacutainer tubes (Becton Dickinson, Franklin Lakes, USA). Blood samples 147 

were collected after an overnight fasting period from 10 volunteers at the beginning and the 148 

end of the 28-day period of consumption of 11 g of freeze-dried wild blueberry powder 149 

dissolved in 500 mL low nitrate water twice a day. Eight mL of blood collected into BD 150 

Vacutainer tubes were immediately centrifuged at room temperature in a horizontal rotor for 151 

20 min at 1,500xg. The cell layer was collected and wished twice with sterile PBS with 152 

centrifugation at 300xg for 10 min between each washing step. The obtained pellet of PBMCs 153 

was immediately frozen at -80°C and kept at this temperature until use. 154 

 155 

Total RNA extraction: The PBMCs were lysed using lysing buffer solution from the RNeasy 156 

Micro Kit (Qiagen, Hilden, Germany). Total RNA extraction has been performed using 157 

RNeasy Micro Kit as recommended by the manufacturer. RNA quality and quantity were 158 

checked by 1% agarose gel electrophoresis and by the determination of the absorbencies at 159 

260 and 280 nm on NanoDrop ND-1,000 spectrophotometer (Thermo Scientific, Wilmington, 160 

DE, USA). The total RNA were stored at -80°C until used.  161 
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Microarray analysis: Total RNA (50 ng per sample) for 20 RNA samples  (10 from the 162 

volunteers at the beginning and 10 at the end of the 28-day study period) was amplified and 163 

fluorescently labelled to produce Cy5 or Cy3 cRNA using the Low Input Quick Amp 164 

Labeling two color Kit (Agilent, Santa Clara, USA) in the presence of spike-in two colors 165 

control as recommended by the manufacturer. After purification, 825 ng of labeled cRNA 166 

were hybridized onto G4845A Human GE 4x44K v2 microarray (Agilent, USA) according to 167 

the manufacturer’s instructions. The G4845A Human GE 4x44K v2 microarray contains 168 

27958 Entrez Gene RNAs sequences. After hybridization, microarrays were scanned with 169 

Agilent G2505 scanner (Agilent, USA) and data were extracted with Feature Extraction 170 

software (Agilent, USA) using linear and Lowess normalization. Genespring GX10 software 171 

(Agilent, Santa Clara, CA, USA) was used to quantify the signal and background intensity for 172 

each feature and to substantially normalize the data by the 75th percentile method. Statistical 173 

analyses were performed using Genespring GX10 software to identify differentially 174 

expressed genes using Student’s t test and the probability values were adjusted false 175 

discovery rate to eliminate false positives. Genes with FDR corrected p<0.05 and with a fold 176 

change >1.2 were referred to as differentially expressed genes (608). A gene list was chosen 177 

based on strict criteria to perform a multivariate analysis on plasma (poly)phenol 178 

concentrations. At first, the coefficient of variation of fold change expression was calculated 179 

between individuals where genes with less than 20% variation were designated resulting in a 180 

list of 152 genes. A fold change cut-off of at least 1.3 was chosen resulting in 20 remaining 181 

genes (Figure 3A). Next, a Pearson correlation followed by stepwise multivariate linear 182 

regression analysis of metabolite concentrations against the top 20 selected genes was 183 

performed. The analysis was executed 20 times, inserting every-time one gene against the 63 184 

metabolites. 185 
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miRNA expression analysis: The impact of blueberry consumption on the expression of 186 

miRNAs was analyzed using Human miRNA (V3) 8x15K microarrays (Agilent, Santa Clara, 187 

USA). MiRNAs were labeled using miRNA labeling and hybridization kit from Agilent 188 

technologies (Agilent, Santa Clara, USA) as recommended by the manufacturer. Briefly, 100 189 

ng of each total RNA sample were treated with calf intestinal phosphatase for 30 min at 37°C 190 

before denaturing the samples using pure DMSO at 100°C for 5 min and rapid transfer in an 191 

ice water bath to prevent RNA reannealing. RNA samples were labeled with pCp-Cy3 using 192 

T4 RNA ligase by incubation at 16°C for 2 h. After purification with microBioSpin columns, 193 

labeled samples were hybridized to Agilent human miRNA microarrays. Hybridizations were 194 

performed for 24 h at 55°C after which  the microarrays were washed in GE Wash Buffer 1 195 

(Agilent, Santa Clara, CA, USA) and GE Wash Buffer 2 (Agilent, Santa Clara, CA, USA) for 196 

5 min. Following washing step, the microarrays were scanned with Aligent Microarray 197 

Scanner (Agilent, Santa Clara, CA, USA). The scanned images were analyzed using Feature 198 

Extraction Software (Agilent, Santa Clara, CA, USA). Genespring GX10 software (Agilent, 199 

Santa Clara, CA, USA) was used to quantify the signal and background intensity for each 200 

feature and to substantially normalize the data by the 75th percentile method. The statistical 201 

significance was the corrected ratios of hybridization signal intensity between blueberry-202 

exposed samples and control samples. miRNAs selected by these criteria are referred to as 203 

the “differentially expressed miRNAs”. 204 

Biological interpretation: to extract maximum biological information of differentially 205 

expressed genes, together with gene ontology (biological processes) and gene networks, 206 

genes were also classified according to their role(s) in cellular or metabolic pathways using 207 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 208 

(http://www.genome.jp/kegg/pathway.html) and Metacore (https://portal.genego.com) 209 

databases. Gene network interactions were based on data mining tools where a score was 210 
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given to every genes occurring in the same research abstracts. Potential transcription factors 211 

involved in the regulation of differentially expressed genes were searched using network 212 

algorithms for transcription factors development in Metacore software. Potential target genes 213 

of miRNA were identified using miRWalk database (http://www.umm.uni-214 

heidelberg.de/apps/zmf/mirwalk/).  215 

Power calculation and statistical analyses 216 

FMD was defined as the primary outcome. Based on previous intervention studies with 217 

blueberries, we expected a change in FMD by 1-2%.(12) The intra- and inter-individual 218 

variability for FMD measurements established in our laboratory are 0.9% (standard deviation 219 

of difference between repeated FMD measurements in n=20 middle aged healthy subjects, 220 

unpublished) and 1% (standard deviation within a group of healthy old subjects).(21) Study 221 

1-3: Assuming a SD of difference between repeated FMD measurements of 0.9%, intra-222 

individual measurements in 5 and 10 experimental subjects would provide sufficient power to 223 

detect an absolute change in FMD of 1.5% and 0.9% (two sided a of 5%, power = 0.80). 224 

Study 4: Assuming a SD of change in FMD of 1%, 20 experimental and 20 control subjects 225 

would provide sufficient power to detect an absolute change in FMD of 0.9% (two sided a of 226 

5%, power = 0.80). Changes in FMD values were compared to control by one-way repeated 227 

measurements ANOVA (study 1-2) and are presented as mean values and 95% confidence 228 

intervals. In study 3, FMD values were compared to baseline by one-way repeated 229 

measurements ANOVA. In study 4, changes in FMD values at 2h, 1 month, and 1 month/2h 230 

relative to baseline values at day 1/0h were compared to control by one-way repeated 231 

measurements ANOVA (study 1-2) and are presented as mean values and 95% confidence 232 

intervals. Sample size calculations for the mouse study were based on our previously 233 

described method (17) to detect significant FMD changes with a power of 0.8 and error 234 

probability of 0.05. Changes in % FMD in between control and acute/chronic mixes were 235 
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performed using one-way repeated measurements ANOVA with Dunnett’s post-hoc test.  236 

Correlations are presented as Pearson’s r for normal distribution and as Spearman for non-237 

normal distribution. Analyses were performed in Prism 6 and 7 and SPSS 20 (IBM). See 238 

above sections for microarray analyses. 239 

 240 

RESULTS 241 

The characteristics of the healthy volunteers (mean age 33±6 years [study 4]) are shown in 242 

Supplementary TABLE 1. 243 

Anthocyanins are major contributors of endothelial function improvement after 244 

blueberry consumption 245 

We first evaluated the potential role of anthocyanins as major bioactives in blueberries to 246 

increase endothelial function. In a randomized crossover study (Study 1; Supplementary 247 

FIGURE 1), we compared the effects of fiber, minerals and vitamins, and anthocyanins with 248 

the effects of blueberries containing the compounds in similar amounts on flow-mediated 249 

vasodilation (FMD). Our present results demonstrated that neither the vehicle control drink, 250 

the control with fiber, nor the control with minerals and vitamins in similar amounts as 251 

present in 100g of fresh blueberries (TABLE 1) had a significant effect on FMD at 2 and 6h 252 

post-consumption (FIGURE 1A). More importantly, 160 mg of pure anthocyanins was 253 

sufficient to increase FMD in a similar magnitude as blueberries containing 150 mg 254 

anthocyanins did.  255 

 256 

Pure anthocyanins dose-dependently increase endothelial function  257 

To further evaluate the causal role of anthocyanins in the mediation of vascular effects of 258 

blueberries, we performed dose-response experiments with pure anthocyanins (Study 2; 259 

Supplementary FIGURE 2). Our data demonstrate a clear dose-dependent increase in FMD 260 
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at 2 and 6 h after consumption of pure anthocyanins (0-480 mg), respectively (FIGURE 1B). 261 

The amount to achieve half-maximal FMD improvements (ED50) was 131 mg (95%CI:59,290 262 

mg) and 150 mg (95%CI:78,290 mg) ACN at 2h and 6 h, respectively. The top of the sigmoid 263 

curve fit indicated maximal FMD increases of 1.3% (95%CI:0.8,1.9%) and 1.1% (95%CI: 264 

0.6,1.5%), respectively. This was similar to our previously published dose-response study 265 

with blueberries.(12) The current analysis of dose-response data from the previously 266 

published study(12) is shown in FIGURE 1C. It showed that the amount of anthocyanins in 267 

blueberries to achieve half-maximal FMD improvements was 120 mg and did not 268 

significantly differ from pure anthocyanins. The top of the sigmoid curve fit indicated a 269 

maximal FMD increases after blueberries of 2.1% (95%CI:1.8,2.5%) which is significantly 270 

larger than achieved with anthocyanins when consumed alone.  271 

 272 

Daily blueberry consumption leads to sustained effects on endothelial function and 273 

blood pressure 274 

We then evaluated (a) which anthocyanin metabolites circulate in blood and may, therefore, 275 

qualify as bioactives causing the vascular functional effects, and (b) whether acute effects 276 

translate into sustained effects with a potential to impact vascular health.  277 

In a pilot open label study (Study 3; Supplementary FIGURE 3) to evaluate the timecourse 278 

of chronic effects, we administered wild blueberries containing 150 mg ACN bi-daily (300 279 

mg/day) over one month and measured FMD every week in the morning after over night 280 

fasting. FMD significantly increased already after one week, increased further after 2 weeks, 281 

and plateaued thereafter (FIGURE 2A). This suggests that at least 2 weeks of daily blueberry 282 

consumption are necessary to achieve a sustained improvement in endothelial function that 283 

persists after overnight fasting. 284 
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We then performed a one month randomized controlled intervention study (Study 4; 285 

Supplementary FIGURE 4) with additional secondary end-points including 24-h-blood-286 

pressure-measurements, AIX, PWV, and blood lipids, and detailed metabolomics analyses 287 

(Supplementary TABLE 2). The very first (acute) consumption of wild blueberry 288 

containing 150 mg of ACN significantly increased FMD by 1.5% (95%CI:0.6,2.3%) at 2 h 289 

post-ingestion as compared to control (FIGURE 2B). After 28 days of bi-daily consumption, 290 

FMD was significantly increased after overnight fasting in the wild blueberry group as 291 

compared to control by 2.3% (95%CI:1.4,3.2%). Interestingly, no further improvement in 292 

FMD was observed when blueberries were acutely consumed on day 28 (acute-on-chronic; 293 

0.3% [95%CI:-1.3,0.6%]) suggesting a saturation of effect indicating that acute and chronic 294 

effects may be mediated via similar pathways.  295 

The improvement in FMD was accompanied by a lowering of 24h-SBP (-5.6 mmHg 296 

[95%CI:-0.2,-11.1mmHg)]. Changes in 24h-DBP were not significantly different from 297 

control (-5.5 mmHg [95%CI:-13.0,1.9 mmHg)]. No changes were seen with respect to PWV, 298 

AIX, or blood lipids in our present study. 299 

 300 

Acute and chronic blueberry effects are linked to circulating anthocyanin metabolome 301 

To identify potential mediators of vascular effects, we performed a metabolomics analysis of 302 

circulating anthocyanin metabolites. A total of 63 phenolic metabolites were quantified in 303 

plasma taken from subjects after blueberry at 2h after first dose and after 1 month of bi-daily 304 

consumption after an overnight fast. Most of the metabolites were conjugated and non-305 

conjugated phenolic acid derivatives, with only 3 of them being flavonoid derivatives (see 306 

Supplementalry TABLE 2; data published elsewhere (22)). To link the circulating 307 

metabolites with vascular effects, we performed univariate correlation analyses with the 308 

increases in FMD at 2 h and after 28-day consumption of blueberry and all individual plasma 309 
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metabolites (TABLE 2A). Fourteen phenolic metabolites significantly correlated with the 310 

acute effects and 21 with the chronic responses, with 9 of them correlating with both acute 311 

and chronic responses.  312 

 313 

Anthocyanin metabolites lead to endothelial function improvements when injected into 314 

a translational experimental model 315 

To demonstrate the biological activity of the circulating ACN metabolites that correlated with 316 

the FMD responses in the human study (Study 4), we facilitated a translational animal model 317 

that allows the measurement of FMD in living mice.(17) We assessed FMD in crossover 318 

study in 10 anesthetized mice before and at 15 min after injection of mixtures of the 319 

anthocyanin metabolites that were significantly correlated with acute and chronic blueberries 320 

effects in study 4 or vehicle (TABLE 2B). Both metabolite mixes led to significant increases 321 

in FMD over vehicle (‘acute’-metabolites: 8.7% [95%CI:3,15%]; ‘chronic’-metabolites: 322 

8.3% [95%CI:2,14%]; FIGURE 2C).  323 

Gene and miRNA expression changes linked with chronic consumption of blueberries 324 

To gain insight into the nutrigenomic effect of chronic wild blueberry consumption, we 325 

performed exploratory gene expression analyses on PBMCs from a subgroup (n=10) of the 326 

subjects participating in Study 4 comparing samples taken at baseline before and after having 327 

received blueberries over 28 days. The analyses showed that 608 genes were significantly 328 

differentially expressed (Supplementary FIGURE 5), with 357 genes up-regulated and 251 329 

identified as down-regulated with fold-changes varying from -1.58 to 1.61 (see FIGURE 3A 330 

for top 20). A homogenous fold change expression across all ten individuals was observed 331 

with a minor variation in volunteer 1 for a subset of the genes (Supplementary FIGURE 5). 332 

To evaluate the biological significance of the nutrigenomic data, a functional annotation of 333 

the 608 genes according to biological processes (gene ontology) was performed. Gene 334 



17 

 

 17 

network analysis was conducted to investigate gene-gene interactions. Among the 35 335 

significant gene networks identified, 11 are known to be involved in the regulation of 336 

chemotaxis and inflammation/immune response, 9 in cell adhesion and cytoskeleton 337 

organization, and few networks regulating signal transduction, apoptosis, or development. 338 

Together with gene network analyses, pathway enrichment analyses using KEGG and 339 

Metacore databases showed that among the most overrepresented pathways identified are 340 

those involved in the regulation of cell adhesion, cell migration, inflammation, and cell 341 

differentiation processes (FIGURE 3A, Supplementary FIGURE 6).  342 

 343 

Together with the impact of blueberry polyphenol compounds on the expression of genes, we 344 

also analyzed their impact on expression of small non-coding RNA, microRNA, involved in 345 

the post-transcriptional regulation of gene expression. Our nutrigenomic study identified 3 346 

differentially expressed miRNA in PBMCs of the volunteers consuming blueberries for 1 347 

month: miR-181c-3p*, miR-126-5p*, miR-30c-5p (Supplementary TABLE 3). The most 348 

striking finding was the 13-fold increase in expression of miR-181c. With the aim to retrieve 349 

potential biological effects of modulation of the 3 miRNAs, we identified target genes of 350 

these miRNAs using the MirWalk database and performed network and pathway analyses. 351 

Our comparison of differentially expressed genes with potential target genes of differentially 352 

expressed miRNAs revealed 69 genes in common. This observation suggests that 11% of 353 

differentially expressed genes could be regulated at post-transcriptional level by the miRNAs. 354 

Bioinformatic analyses to identify pathways and networks in which target genes are involved 355 

in have shown that among the most over-represented ones are those involved in the regulation 356 

of focal adhesion, chemotaxis, cytoskeletal reorganization, cytokine-cytokine interactions, 357 

cellular development but also lipid absorption, accumulation and excretion (FIGURE 3B, 358 

Supplementary FIGURE 6).  359 
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 360 

Metabolites predict expression changes in the top 20 selected genes 361 

One third (n=21) of the quantified 63 metabolites showed significant correlation with 362 

improvements in FMD. To explore whether circulating blueberry derived phenolic 363 

metabolites might be responsible for the changes in gene activity in PBMCs, a correlation 364 

followed by a stepwise multivariate analysis was performed on a selection of top 20 genes 365 

with inter-individual variability less than 20%. From these top 20 genes, 15 are involved in 366 

processes of inflammation or have a functional link to cardiovascular disease development. 367 

Twelve metabolites were identified as significant independent predictors for changes in 368 

expression of the 20 genes (FIGURE 3A). Notably, the R2 of the individual multivariate 369 

linear regression models including sets of metabolites being significant independent 370 

predictors of gene changes were 0.73-0.99 suggesting that 73-99% of the variability in gene 371 

expression changes were explained by the metabolites. Two of the 12 metabolite independent 372 

predictors of gene expression changes (namely quercetin 3-O-ß-D-glucuronide and 373 

homovanillic acid) positively correlated with improved human vascular function and were 374 

also part of the polyphenol mix that significantly increased FMD in mice.  375 

376 
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DISCUSSION 377 

While blueberries contain many potentially ‘healthy’ bioactive molecules including vitamins, 378 

fibre, and minerals, our present results demonstrate that anthocyanins are major bioactive 379 

compounds in blueberry that can account for the increases in endothelial function after 380 

blueberry consumption. Our data demonstrate for the first time that purified anthocyanins 381 

cause dose-dependent improvements in endothelial function. The comparison of pure 382 

anthocyanins dose-responses experiments with the previously obtained results with 383 

anthocyanin-rich blueberries (12) supports that the majority of blueberry effects can be 384 

explained by anthocyanins but also indicate that the beneficial effects of blueberries are still 385 

larger than achieved with the consumption of anthocyanins alone. This may be due to other 386 

blueberry (poly)phenols likely chlorogenic acids, which have been previously shown to be 387 

capable of inducing favorable effects on endothelial function.(23) The amounts of vitamins, 388 

fibres, and minerals but also the amount of flavanols (3 mg of flavanol monomers)(24) 389 

present in blueberries were too low to exert significant effects. However, we cannot discard 390 

possible synergistic and/or antagonistic effects of components when consumed as a whole 391 

food, rather than individual compounds, as well as matrix effects affecting the liberation or 392 

absorption of anthocyanins from blueberries, which have been previously described to play a 393 

role in the context of flavanols.(25) 394 

 395 

We also report for the first time in healthy adults that chronic blueberry consumption leads to 396 

a significant sustained improvement in endothelial function and lowering of 24-h-SBP. A few 397 

studies in at-risk populations, however, have demonstrated a reduction in blood pressure after 398 

blueberry consumption.(26) The potential clinical relevance of the findings is underscored by 399 

the fact that the lowering of blood pressure in the magnitude observed in our study of 5 400 

mmHg is similar to what is commonly observed in clinical studies with blood pressure 401 
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lowering medication (e.g. ACE inhibitors) in patients.(27) Taken together, our data 402 

demonstrate that blueberries not only acutely and transiently improve endothelial function 403 

(12) but also induce sustained improvement in endothelial function and SBP after repetitive 404 

consumption over 1 month.  405 

 406 

The molecular mechanisms-of-action of blueberries have still not been fully characterized 407 

and this may be due to the fact that only recently significant advances in the understanding of 408 

the absorption and metabolism of anthocyanins and blueberry polyphenols were made 409 

indicating that, for instance, anthocyanins primarily circulate as phenolic metabolites.(12, 15) 410 

However, most clinical studies with cardiovascular outcomes have not reported plasma or 411 

urine levels of circulating polyphenol metabolites in the participants. In a targeted 412 

metabolomics approach, we identified here in healthy humans a panel of circulating 413 

metabolites that correlated with vascular FMD responses and demonstrated in a translational 414 

model that these metabolites are indeed bioactive and can improve FMD after injection. 415 

Importantly, these metabolites do not represent metabolites specific for anthocyanins and are 416 

common metabolites of other common dietary (poly)phenols.(9) It may be argued that it is a 417 

limitation of the present work that we did not quantify parent anthocyanins and their phase II 418 

metabolites. However, we believe that such results would likely not impact the outcomes of 419 

our present work as the majority of anthocyanins are transformed into low molecular weight 420 

phenolic metabolites, which we quantified in this work. Intact anthocyanins are present in 421 

very low concentrations in plasma, and typically represent less than 1% of the anthocyanin 422 

metabolome, therefore, do not significantly contribute to the pool of circulating anthocyanin 423 

metabolites (12,15).  424 

Future work is needed to dissect if it is one or several of the metabolites or combinations of 425 

metabolites that mediate the effects and if the individual metabolites act via the same or 426 
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different potentially synergistic mechanism(s). The investigation of structure-function 427 

relationships with these candidate metabolites may help to identify the molecular target 428 

structure and investigate potential class effects. Many (poly)phenols share similar phase II 429 

and gut microbiome derived metabolites, and similar metabolites have been observed to 430 

correlate with FMD after consumption of coffee (23) and cranberries (28). Furthermore, 431 

whether these effects, slow or even reverses components of cardiovascular aging itself and 432 

can increase healthspan or longevity remains to be determined. Future randomized controlled 433 

trials in larger populations including older subjects with relevant clinical endpoints will 434 

answer this question. 435 

 436 

Identifying molecular targets of polyphenol has proven to be a real challenge due to the 437 

complex mechanisms and pleiotropic pathways of cardiometabolic effects of different foods. 438 

We here used an exploratory nutrigenomic approach aiming at identifying gene networks in 439 

circulating mononuclear cells that were modulated by blueberry consumption in healthy 440 

humans and explored which gene and expression changes correlate with circulating phenolic 441 

metabolites and vascular responses. It is a limitation of this approach that gene expression 442 

changes were investigated in blood cells and not endothelial cells. However, immune 443 

responses, mediated by both circulating and resident leukocytes,(29) play pathophysiological 444 

roles in the development and progression of CVD, including neutrophil recruitment, coronary 445 

atherosclerotic plaque development and stability, heart failure, and endothelial 446 

dysfunction.(30, 31) A few studies have proposed molecular mechanisms-of-action of other 447 

(poly)phenols in vitro and in vivo using nutrigenomic approaches.(32) These studies suggest 448 

that dietary (poly)phenols exert anti-inflammatory properties by binding to molecular targets 449 

in human cells making them attractive candidates for dietary CVD prevention strategies. Our 450 

present data corroborate these overall observations and add to the current body of knowledge 451 
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by supplying in vivo data on nutrigenomic effects of blueberries and link these with 452 

anthocyanin-metabolites in healthy humans. Among the significant gene networks identified 453 

from genes whose expression was affected by blueberry, one third is involved in the 454 

regulation of immune response and inflammation. This observation suggests that blueberry 455 

consumption can modulate inflammatory cellular processes of PBMCs that represent cellular 456 

targets of vascular function maintenance. The fact that we also identified circulating 457 

anthocyanin metabolites in plasma as strong predictors of expression changes in the most 458 

overexpressed genes with the majority being involved in inflammation suggest that these 459 

metabolites may play a mechanistic role in the mediation of effects. Only 2 metabolites 460 

correlated both with vascular function improvements and gene expression changes indicating 461 

that the mechanism by which anthocyanin metabolites modulate vascular function and PBMC 462 

expression changes may differ and the interaction is likely complex. We also observed 463 

significant changes in the expression of 3 micro RNAs. The little data available for miR-30c-464 

5p and miR-181c-3p suggests that they could play a role in cancer development but a 465 

possible link with cardiovascular disease remains to be determined. miR-126-5p was 466 

described as being involved in enhancing the inflammatory responses of monocytes(33) or 467 

showing increased expression in patients with carotid artery disease(34) and acute 468 

pancreatitis.(35) Taken together, our nutrigenomic data showed that blueberry consumption 469 

can modulate the expression of genes and miRNA towards an anti-inflammatory and CVD 470 

protective profile, revealing new molecular targets that may be underlying the health 471 

properties of berries.  472 

 473 

In conclusion, our results demonstrate a key role of anthocyanin metabolites in the mediation 474 

of biological activities of blueberries that could contribute to healthy cardiovascular aging. 475 

We provide further scientific evidence that in healthy humans chronic blueberry consumption 476 
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leads to sustained cardiovascular benefits which are linked with circulating anthocyanin 477 

metabolites and the modulation of cellular gene programs towards an anti-inflammatory and 478 

CVD protective profile. Future studies will help to further characterize the mechanisms-of-479 

action of individual metabolites, establish general structure-function relationships, and 480 

identify relevant interactions. As the identified metabolites are common for a range of food 481 

bioactive classes, this knowledge represents an important building block necessary for the 482 

development of evidence based dietary recommendations for food bioactives in primary 483 

prevention. 484 

485 
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TABLE 1: Composition of interventions used in human studies (ACN, anthocyanin). 

  Control Control Control ACN Blueberry 

    (+fiber) (fiber+minerals+vitamins)     

Dietary fiber (g)   5 5   4.4 

Potassium (mg)     75   68 

Fructose (g) 3.5 3.5 3.5 0.05 3.6 

Total beta carotene (IU)     50   58 

Vitamin C (mg)     12.5   1.7 

Calcium (mg)     20   17 

Iron (mg)     0.63   0.58 

Vitamin E (IU)     1.88   0.39 

Vitamin B1 (mg)     0.18   0.03 

Vitamin B2 (mg)     0.19   0.01 

Vitamin B6 (mg)     0.25   0.02 

Phosphorus (mg)     15.6   12.9 

Magnesium (mg)     12.5   6.5 

Zinc (mg)     0.63   0.67 

Manganese (mg)     2.25   2.87 

Niacin (mg)     2.5   0.61 

Anthocyanins (mg)       160 150 

Flavanol monomers (mg)         3 

Flavanol oligomers (mg)         49 

Flavonols (mg)         31 

Chlorogenic acid (mg)         64 
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TABLE 2: Details of plasma metabolism from human (A) and animal (B) studies  

 

A Univariate correlation between human plasma metabolites (study 4) and change in FMD at 

2 h (2h FMD), ‘acute effect’) and after 28 days ( d FMD, ‘chronic effect’) of blueberry 

consumption in humans (values are Pearson’s r and all p<0.05) and B composition of 

metabolite mixes that were injected intracardially (IC) in 100 𝜇Lvehicle into mice to 

demonstrate bioactivity of 2 h and 28 d metabolite profiles. Values represent estimated 

instantaneous concentrations (M) in mouse plasma. 

 

  

 

 

 

2h FMD 28 d FMD 2 h Metabolites 28 d Metabolites

Cinnamic acids Ferulic acid 0.51 0.1

Ferulic acid-4-O -sulfate 0.36 0.43 1.6 1.2

Ferulic acid 4-O -ß-D-glucuronide 0.44 2.8

Isoferulic acid 3-O -ß-D-glucuronide 0.43 0.48 0.5 1.1

Dihydroferulic acid 0.54 0.43 1.0 1.5

Dihydroferulic acid 4-O -ß-D-glucuronide 0.42 1.1

Dihydroisoferulic acid 3-O -ß-D-glucuronide 0.41 0.1

Dihydroisoferulic acid 3-O -sulfate 0.43 0.6

Dihydrocaffeic acid 3-O -sulfate 0.63 1.6

p-Coumaric 0.40 0.1

Cinnamic acid 0.42 0.3

Chlorogenic acid 0.44 è 1.0

Benzoic acids Vanillic acid 0.60 0.61 6.0 10.0

Homovanillic acid 0.40 0.52 0.9 1.4

Protocatechuic acid 0.37 0.3

Syringic acid 0.41 0.42 0.1 0.2

4-Hydroxybenzoic acid 0.37 0.4

2,4-Dihydroxybenzoic acd 0.64 0.4

4-Methylgallic acid-3-O -sulfate 0.40 0.41 0.8 0.5

Phenols 4-Methylcatechol-2-O -sulfate 0.42 12.7

1-Methylpyrogallol-O -sulfate 0.62 0.50 0.9 1.8

Hippuric acids Hippuric acid 0.57 368.9

3-Hydroxyhippuric acid 0.56 10.5

Phenylacetic acids 3-Hydroxyphenyl acetic acid 0.46 3.0

4-Hydroxyphenyl acetic acid 0.41 0.40 3.0 5.0

Flavonols Quercetin 3-O-ß-D-glucuronide 0.38 104.5

A Correlation analysis 

human study (values are 

Pearson's r, all p<0.05)

B  
Estimated concentration mouse 

plasma after IC injection (mM)
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FIGURE LEGENDS 

Graphical abstract 

FIGURE 1: Importance of anthocyanin (ACN) in blueberry-mediated acute 

improvements in vascular function. Comparison of ACN effect on flow-mediated dilation 

(FMD) with (A) other components of blueberry at 2 and 6 h  after ingestion (see TABLE 1 

for composition of interventions), (B) dose-response of ACN at 2 and 6 h (0 mg control 

arbitrarily set to 1), and (C) dose-response of blueberry at 2 h (adapted from (12)). * p <0.05 

vs 0 mg ACN control. 

FIGURE 2: Circulating anthocyanin metabolites improve vascular function. (A) Pilot 

study to demonstrate time course of FMD during daily consumption of blueberries. (B) FMD 

values at baseline after acute, chronic, and acute on chronic ingestion of control (white bars) 

and blueberry (blue bars). In theses subjects a targeted metabolomics analysis of plasma 

metabolites was performed. We identified metabolites that correlated with the 2h and day 28 

changes (*see TABLE 2A for correlation analysis) and composed a chemically pure mix of 

the identified metabolites that we injected intracardially into mice. (C) FMD in mice at before 

and after 15 min injection of mixtures of anthocyanin metabolite profiles that correlated with 

of acute (2h) and chronic (28 days) FMD improvements in human study (*see TABLE 2B 

for composition).  

FIGURE 3: (A) Summary of individual stepwise regression analyses identifying circulating 

metabolites as significant independent predictors of gene expression changes of the top 20 

differentially expressed genes after 1 month of blueberry consumption (n=10). * designate that 

also significant correlations existed with changes in flow-mediated dilation.  (B) Schematic 

illustration of biological processes and molecular functions occuring in PBMC upon blueberry 

intake. A subset of genes from the 608 significant differentially expressed list were chosen for 
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this figure as they are involved in previously established cell processes which are highlighted 

in blue. 
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