7 research outputs found

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    Removal of heavy metals using different polymer matrixes as support for bacterial immobilisation

    Get PDF
    Great attention is focused on the microbial treatment of metal contaminated environments. Three bacterial strains, 1C2, 1ZP4 and EC30, belonging to genera Cupriavidus, Sphingobacterium and Alcaligenes, respectively, showing high tolerance to Zn and Cd, up to concentrations of 1000ppm, were isolated from a contaminated area in Northern Portugal. Their contribution to Zn and Cd removal from aqueous streams using immobilised alginate, pectate and a synthetic cross-linked polymer was assessed. In most cases, matrices with immobilised bacteria showed better metal removal than the non-inoculated material alone. For the immobilisation with all the polymers, 1C2 was the strain that increased the removal of Zn the most, whereas EC30 was the most promising for Cd removal, especially when combined with the synthetic polymer with up to a ca. 11-fold increase in metal removal when compared to the polymer alone. Removal of individual metals from binary mixtures showed that there was differential immobilisation. There was greater removal of Cd than Zn (removals up to 40% higher than those showed for Zn). The results show that metal contaminated environments constitute a reservoir of microorganisms resistant/tolerant to heavy metals that have the capacity to be exploited in bioremediation strategies.Capsule immobilisation of bacteria in the naturally occurring alginate and pectate and in a synthetic cross-linked polymer increased the Zn and Cd removal abilities from single and binary contaminated waters; the applications with the synthetic polymer were the most promising for Cd and Zn removal in single and binary mixtures

    Dormancy as exaptation to protect mimetic seeds against deterioration before dispersal

    No full text
    Mimetic seeds simulate the appearance of fleshy fruits and arilled seeds without producing nutritive tissues as a reward for seed dispersers. In this strategy of seed dispersal, seeds may remain attached to the mother plant for long periods after maturity, increasing their availability to naive seed dispersers. The hypothesis that seed coat impermeability in many tropical Fabaceae with mimetic seeds serves as an exaptation to protect the seeds from deterioration and rotting while awaiting dispersal was investigated. Seed coat impermeability was evaluated in five mimetic-seeded species of tropical Fabaceae in south-eastern Brazil (Abarema langsdorffii, Abrus precatorius, Adenanthera pavonina, Erythrina velutina and Ormosia arborea) and in Erythrina speciosa, a `basal` species in its genus, which has monochromatic brown seeds and no mimetic displays. Seed hardness was evaluated as a defence against accelerated ageing (humid chamber at 41 degrees C for 144 h). Seed development and physiological potential of O. arborea was evaluated and the effect of holding mature seeds in pods on the mother plant in the field for a period of 1 year under humid tropical conditions was compared with seeds stored under controlled conditions (15 degrees C and 40 % relative air humidity). All five mimetic-seeded species, and E. speciosa, showed strong coat impermeability, which protected the seeds against deterioration in accelerated ageing. Most O. arborea seeds only became dormant 2 months after pod dehiscence. Germination of seeds after 1 year on the plant in a humid tropical climate was 56 %, compared with 80 % for seeds stored in controlled conditions (15 degrees C, 45 % relative humidity). Seedling shoot length after 1 year did not differ between seed sources. Dormancy acts in mimetic-seeded species as an exaptation to reduce seed deterioration, allowing an increase in their effective dispersal period and mitigating the losses incurred by low removal rates by naive avian frugivores
    corecore