3,153 research outputs found

    Two-Hop Interference Channels: Impact of Linear Time-Varying Schemes

    Full text link
    We consider the two-hop interference channel (IC) with constant real channel coefficients, which consists of two source-destination pairs, separated by two relays. We analyze the achievable degrees of freedom (DoF) of such network when relays are restricted to perform scalar amplify-forward (AF) operations, with possibly time-varying coefficients. We show that, somewhat surprisingly, by providing the flexibility of choosing time-varying AF coefficients at the relays, it is possible to achieve 4/3 sum-DoF. We also develop a novel outer bound that matches our achievability, hence characterizing the sum-DoF of two-hop interference channels with time-varying AF relaying strategies.Comment: To appear in Proc. of ISIT 2013 (proof of lemma added

    First report of Metarhizium anisopliae IP 46 pathogenicity in adult Anopheles gambiae s.s. and An. arabiensis (Diptera; Culicidae).

    Get PDF
    The entomopathogenic fungus Metarhizium anisopliae isolate IP 46, originating from a soil sample collected in 2001 in the Cerrado of Central Brazil, was tested for its ability to reduce the survival of adult male and female Anopheles gambiae s.s. and An. arabiensis mosquitoes. A 6-h exposure to the fungus coated on test paper at a concentration of 3.3 x 106 conidia cm-2 reduced the daily survival of both mosquito species (HR = 3.14, p < 0.001), with higher risk of dying in An. gambiae s.s relative to An. arabiensis (HR = 1.38, p < 0.001). Fungal sporulation was observed in >95% of mosquito cadavers in the treatment groups. The results indicate that M. anisopliae IP 46 has the potential to be a bio-control agent for African malaria vector species, and is a suitable candidate for further research and development

    Entomopathogenic fungi, Metarhizium anisopliae and Beauveria bassiana reduce the survival of Xenopsylla brasiliensis larvae (Siphonaptera: Pulicidae).

    Get PDF
    Entomopathogenic fungi, particularly those belonging to the genera Metarhizium and Beauveria have shown great promise as arthropod vector control tools. These agents, however, have not been evaluated against flea vectors of plague. A 3-h exposure to the fungi coated paper at a concentration of 2 × 108 conidia m-2 infected >90% of flea larvae cadavers in the treatment groups. The infection reduced the survival of larvae that had been exposed to fungus relative to controls. The daily risk of dying was four- and over three-fold greater in larvae exposed to M. anisopliae (HR = 4, p<0.001) and B. bassiana (HR = 3.5, p<0.001) respectively. Both fungi can successfully infect and kill larvae of X. brasiliensis with a pooled median survival time (MST±SE) of 2±0.31 days post-exposure. These findings justify further research to investigate the bio-control potential of entomopathogenic fungi against fleas.\ud \u

    Recent Advances and Potential Future Applications of MALDI-TOF Mass Spectrometry for Identification of Helminths

    Get PDF
    Helminth infections caused by nematodes, trematodes, and cestodes are major neglected tropical diseases and of great medical and veterinary relevance. At present, diagnosis of helminthic diseases is mainly based on microscopic observation of different parasite stages, but microscopy is associated with limited diagnostic accuracy. Against this background, recent studies described matrixassisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry as a potential, innovative tool for helminth identification and differentiation. MALDI-TOF mass spectrometry is based on the analysis of spectra profiles generated from protein extracts of a given pathogen. It requires an available spectra database containing reference spectra, also called main spectra profiles (MSPs), which are generated from well characterized specimens. At present, however, there are no commercially available databases for helminth identification using this approach. In this narrative review, we summarize recent developments and published studies between January 2019 and September 2022 that report on the use of MALDI-TOF mass spectrometry for helminths. Current challenges and future research needs are identified and briefly discussed

    The stationary wavelet transform as an efficient reductor of powerline interference for atrial bipolar electrograms in cardiac electrophysiology

    Full text link
    [EN] Objective :The most relevant source of signal contamination in the cardiac electrophysiology (EP) laboratory is the ubiquitous powerline interference (PLI). To reduce this perturbation, algorithms including common fixed-bandwidth and adaptive-notch filters have been proposed. Although such methods have proven to add artificial fractionation to intra-atrial electrograms (EGMs), they are still frequently used. However, such morphological alteration can conceal the accurate interpretation of EGMs, specially to evaluate the mechanisms supporting atrial fibrillation (AF), which is the most common cardiac arrhythmia. Given the clinical relevance of AF, a novel algorithm aimed at reducing PLI on highly contaminated bipolar EGMs and, simultaneously, preserving their morphology is proposed. Approach: The method is based on the wavelet shrinkage and has been validated through customized indices on a set of synthesized EGMs to accurately quantify the achieved level of PLI reduction and signal morphology alteration. Visual validation of the algorithm¿s performance has also been included for some real EGM excerpts. Main results: The method has outperformed common filtering-based and wavelet-based strategies in the analyzed scenario. Moreover, it possesses advantages such as insensitivity to amplitude and frequency variations in the PLI, and the capability of joint removal of several interferences. Significance: The use of this algorithm in routine cardiac EP studies may enable improved and truthful evaluation of AF mechanisms.Research supported by grants DPI2017-83952-C3 MINECO/AEI/FEDER, UE and SBPLY/17/180501/000411 from Junta de Comunidades de Castilla-La Mancha.Martinez-Iniesta, M.; Ródenas, J.; Rieta, JJ.; Alcaraz, R. (2019). The stationary wavelet transform as an efficient reductor of powerline interference for atrial bipolar electrograms in cardiac electrophysiology. Physiological Measurement. 40(7):1-17. https://doi.org/10.1088/1361-6579/ab2cb8S117407Addison, P. S. (2017). The Illustrated Wavelet Transform Handbook. doi:10.1201/9781315372556Allen, D. P. (2009). A frequency domain Hampel filter for blind rejection of sinusoidal interference from electromyograms. Journal of Neuroscience Methods, 177(2), 303-310. doi:10.1016/j.jneumeth.2008.10.019Atienza, F., Almendral, J., Jalife, J., Zlochiver, S., Ploutz-Snyder, R., Torrecilla, E. G., … Berenfeld, O. (2009). Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm. Heart Rhythm, 6(1), 33-40. doi:10.1016/j.hrthm.2008.10.024Atienza, F., Almendral, J., Moreno, J., Vaidyanathan, R., Talkachou, A., Kalifa, J., … Berenfeld, O. (2006). Activation of Inward Rectifier Potassium Channels Accelerates Atrial Fibrillation in Humans. Circulation, 114(23), 2434-2442. doi:10.1161/circulationaha.106.633735Bahoura, M., & Ezzaidi, H. (2011). FPGA-Implementation of Discrete Wavelet Transform with Application to Signal Denoising. Circuits, Systems, and Signal Processing, 31(3), 987-1015. doi:10.1007/s00034-011-9355-0Baumert, M., Sanders, P., & Ganesan, A. (2016). Quantitative-Electrogram-Based Methods for Guiding Catheter Ablation in Atrial Fibrillation. Proceedings of the IEEE, 104(2), 416-431. doi:10.1109/jproc.2015.2505318Castillo, E., Morales, D. P., García, A., Martínez-Martí, F., Parrilla, L., & Palma, A. J. (2013). Noise Suppression in ECG Signals through Efficient One-Step Wavelet Processing Techniques. Journal of Applied Mathematics, 2013, 1-13. doi:10.1155/2013/763903Chen, S.-W., & Chen, Y.-H. (2015). Hardware Design and Implementation of a Wavelet De-Noising Procedure for Medical Signal Preprocessing. Sensors, 15(10), 26396-26414. doi:10.3390/s151026396El B’charri, O., Latif, R., Elmansouri, K., Abenaou, A., & Jenkal, W. (2017). ECG signal performance de-noising assessment based on threshold tuning of dual-tree wavelet transform. BioMedical Engineering OnLine, 16(1). doi:10.1186/s12938-017-0315-1Everett, T. H., Lai-Chow Kok, Vaughn, R. H., Moorman, R., & Haines, D. E. (2001). Frequency domain algorithm for quantifying atrial fibrillation organization to increase defibrillation efficacy. IEEE Transactions on Biomedical Engineering, 48(9), 969-978. doi:10.1109/10.942586Ganesan, A. N., Kuklik, P., Lau, D. H., Brooks, A. G., Baumert, M., Lim, W. W., … Sanders, P. (2013). Bipolar Electrogram Shannon Entropy at Sites of Rotational Activation. Circulation: Arrhythmia and Electrophysiology, 6(1), 48-57. doi:10.1161/circep.112.976654Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., … Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet. Circulation, 101(23). doi:10.1161/01.cir.101.23.e215GOLDBERGER, J. J. (2017). Substrate Ablation for Treatment of Atrial Fibrillation: Back to Basics. Journal of Cardiovascular Electrophysiology, 28(2), 156-158. doi:10.1111/jce.13149Gutiérrez-Gnecchi, J. A., Morfin-Magaña, R., Lorias-Espinoza, D., Tellez-Anguiano, A. del C., Reyes-Archundia, E., Méndez-Patiño, A., & Castañeda-Miranda, R. (2017). DSP-based arrhythmia classification using wavelet transform and probabilistic neural network. Biomedical Signal Processing and Control, 32, 44-56. doi:10.1016/j.bspc.2016.10.005Hamilton, P. S. (1996). A comparison of adaptive and nonadaptive filters for reduction of power line interference in the ECG. IEEE Transactions on Biomedical Engineering, 43(1), 105-109. doi:10.1109/10.477707Heijman, J., Algalarrondo, V., Voigt, N., Melka, J., Wehrens, X. H. T., Dobrev, D., & Nattel, S. (2015). The value of basic research insights into atrial fibrillation mechanisms as a guide to therapeutic innovation: a critical analysis. Cardiovascular Research, 109(4), 467-479. doi:10.1093/cvr/cvv275Honarbakhsh, S., Schilling, R. J., Orini, M., Providencia, R., Keating, E., Finlay, M., … Hunter, R. J. (2019). Structural remodeling and conduction velocity dynamics in the human left atrium: Relationship with reentrant mechanisms sustaining atrial fibrillation. Heart Rhythm, 16(1), 18-25. doi:10.1016/j.hrthm.2018.07.019Jadidi, A. S., Lehrmann, H., Weber, R., Park, C.-I., & Arentz, T. (2013). Optimizing Signal Acquisition and Recording in an Electrophysiology Laboratory. Cardiac Electrophysiology Clinics, 5(2), 137-142. doi:10.1016/j.ccep.2013.01.005JARMAN, J. W. E., WONG, T., KOJODJOJO, P., SPOHR, H., DAVIES, J. E. R., ROUGHTON, M., … PETERS, N. S. (2014). Organizational Index Mapping to Identify Focal Sources During Persistent Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 25(4), 355-363. doi:10.1111/jce.12352KOTTKAMP, H., BERG, J., BENDER, R., RIEGER, A., & SCHREIBER, D. (2015). Box Isolation of Fibrotic Areas (BIFA): A Patient-Tailored Substrate Modification Approach for Ablation of Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 27(1), 22-30. doi:10.1111/jce.12870Krijthe, B. P., Kunst, A., Benjamin, E. J., Lip, G. Y. H., Franco, O. H., Hofman, A., … Heeringa, J. (2013). Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060. European Heart Journal, 34(35), 2746-2751. doi:10.1093/eurheartj/eht280Lau, D. H., Schotten, U., Mahajan, R., Antic, N. A., Hatem, S. N., Pathak, R. K., … Sanders, P. (2015). Novel mechanisms in the pathogenesis of atrial fibrillation: practical applications. European Heart Journal, 37(20), 1573-1581. doi:10.1093/eurheartj/ehv375Lenis, G., Pilia, N., Loewe, A., Schulze, W. H. W., & Dössel, O. (2017). Comparison of Baseline Wander Removal Techniques considering the Preservation of ST Changes in the Ischemic ECG: A Simulation Study. Computational and Mathematical Methods in Medicine, 2017, 1-13. doi:10.1155/2017/9295029Levkov, C., Mihov, G., Ivanov, R., Daskalov, I., Christov, I., & Dotsinsky, I. (2005). Removal of power-line interference from the ECG: a review of the subtraction procedure. BioMedical Engineering OnLine, 4(1). doi:10.1186/1475-925x-4-50Lian, J., Garner, G., Muessig, D., & Lang, V. (2010). A simple method to quantify the morphological similarity between signals. Signal Processing, 90(2), 684-688. doi:10.1016/j.sigpro.2009.07.010Liu, H., Li, Y., Zhou, Y., Jing, X., & Truong, T.-K. (2018). Joint power line interference suppression and ECG signal recovery in transform domains. Biomedical Signal Processing and Control, 44, 58-66. doi:10.1016/j.bspc.2018.04.001Mamun, M., Al-Kadi, M., & Marufuzzaman, M. (2013). Effectiveness of Wavelet Denoising on Electroencephalogram Signals. Journal of Applied Research and Technology, 11(1), 156-160. doi:10.1016/s1665-6423(13)71524-4Martens, S. M. M., Mischi, M., Oei, S. G., & Bergmans, J. W. M. (2006). An Improved Adaptive Power Line Interference Canceller for Electrocardiography. IEEE Transactions on Biomedical Engineering, 53(11), 2220-2231. doi:10.1109/tbme.2006.883631Mart�nez, M., R�denas, J., Alcaraz, R., & Rieta, J. J. (2017). Application of the Stationary Wavelet Transform to Reduce Power-line Interference in Atrial Electrograms. 2017 Computing in Cardiology Conference (CinC). doi:10.22489/cinc.2017.112-049Martínez-Iniesta, M., Ródenas, J., Alcaraz, R., & Rieta, J. J. (2017). Waveform Integrity in Atrial Fibrillation: The Forgotten Issue of Cardiac Electrophysiology. Annals of Biomedical Engineering, 45(8), 1890-1907. doi:10.1007/s10439-017-1832-6Metting van Rijn, A. C., Peper, A., & Grimbergen, C. A. (1990). High-quality recording of bioelectric events. Medical & Biological Engineering & Computing, 28(5), 389-397. doi:10.1007/bf02441961Nademanee, K., McKenzie, J., Kosar, E., Schwab, M., Sunsaneewitayakul, B., Vasavakul, T., … Ngarmukos, T. (2004). A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. Journal of the American College of Cardiology, 43(11), 2044-2053. doi:10.1016/j.jacc.2003.12.054Naseri, H., & Homaeinezhad, M. R. (2012). Computerized quality assessment of phonocardiogram signal measurement-acquisition parameters. Journal of Medical Engineering & Technology, 36(6), 308-318. doi:10.3109/03091902.2012.684832NG, J., BORODYANSKIY, A. I., CHANG, E. T., VILLUENDAS, R., DIBS, S., KADISH, A. H., & GOLDBERGER, J. J. (2010). Measuring the Complexity of Atrial Fibrillation Electrograms. Journal of Cardiovascular Electrophysiology, 21(6), 649-655. doi:10.1111/j.1540-8167.2009.01695.xNg, J., Sehgal, V., Ng, J. K., Gordon, D., & Goldberger, J. J. (2014). Iterative Method to Detect Atrial Activations and Measure Cycle Length From Electrograms During Atrial Fibrillation. IEEE Transactions on Biomedical Engineering, 61(2), 273-278. doi:10.1109/tbme.2013.2290003Oesterlein, T. G., Lenis, G., Rudolph, D.-T., Luik, A., Verma, B., Schmitt, C., & Dössel, O. (2015). Removing ventricular far-field signals in intracardiac electrograms during stable atrial tachycardia using the periodic component analysis. Journal of Electrocardiology, 48(2), 171-180. doi:10.1016/j.jelectrocard.2014.12.004Platonov, P. G., Corino, V. D. A., Seifert, M., Holmqvist, F., & Sornmo, L. (2014). Atrial fibrillatory rate in the clinical context: natural course and prediction of intervention outcome. Europace, 16(suppl 4), iv110-iv119. doi:10.1093/europace/euu249Poornachandra, S., & Kumaravel, N. (2008). A novel method for the elimination of power line frequency in ECG signal using hyper shrinkage function. Digital Signal Processing, 18(2), 116-126. doi:10.1016/j.dsp.2007.03.011Quintanilla, J. G., Pérez-Villacastín, J., Pérez-Castellano, N., Pandit, S. V., Berenfeld, O., Jalife, J., & Filgueiras-Rama, D. (2016). Mechanistic Approaches to Detect, Target, and Ablate the Drivers of Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 9(1). doi:10.1161/circep.115.002481Ravelli, F., Masè, M., Cristoforetti, A., Marini, M., & Disertori, M. (2014). The logical operator map identifies novel candidate markers for critical sites in patients with atrial fibrillation. Progress in Biophysics and Molecular Biology, 115(2-3), 186-197. doi:10.1016/j.pbiomolbio.2014.07.006Schanze, T. (2017). Removing noise in biomedical signal recordings by singular value decomposition. Current Directions in Biomedical Engineering, 3(2), 253-256. doi:10.1515/cdbme-2017-0052Schotten, U., Dobrev, D., Platonov, P. G., Kottkamp, H., & Hindricks, G. (2016). Current controversies in determining the main mechanisms of atrial fibrillation. Journal of Internal Medicine, 279(5), 428-438. doi:10.1111/joim.12492Singh, B. N., & Tiwari, A. K. (2006). Optimal selection of wavelet basis function applied to ECG signal denoising. Digital Signal Processing, 16(3), 275-287. doi:10.1016/j.dsp.2005.12.003Van Wagoner, D. R., Piccini, J. P., Albert, C. M., Anderson, M. E., Benjamin, E. J., Brundel, B., … Wehrens, X. H. T. (2015). Progress toward the prevention and treatment of atrial fibrillation: A summary of the Heart Rhythm Society Research Forum on the Treatment and Prevention of Atrial Fibrillation, Washington, DC, December 9–10, 2013. Heart Rhythm, 12(1), e5-e29. doi:10.1016/j.hrthm.2014.11.011Venkatachalam, K. L., Herbrandson, J. E., & Asirvatham, S. J. (2011). Signals and Signal Processing for the Electrophysiologist. Circulation: Arrhythmia and Electrophysiology, 4(6), 965-973. doi:10.1161/circep.111.96430

    Evaluation of the Qvella FAST System and the FAST-PBC cartridge for rapid species identification and antimicrobial resistance testing directly from positive blood cultures

    Get PDF
    Blood culture diagnostics require rapid and accurate identification (ID) of pathogens and antimicrobial susceptibility testing (AST). Standard procedures, involving conventional cultivation on agar plates, may take up to 48 hours or more until AST completion. Recent approaches aim to shorten the processing time of positive blood cultures (PBC). The FAST System is a new technology, capable of purifying and con centrating bacterial/fungal pathogens from positive blood culture media and produc ing a bacterial suspension called “liquid colony” (LC), which can be further used in downstream analyses (e.g., ID and AST). Here, we evaluated the performance of the FAST System LC generated from PBC in comparison to our routine workflow includ ing ID by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using Sepsityper, AST by automatized MicroScan WalkAway plus and directly inocula ted disk diffusion (DD), and MICRONAUT-AM for yeast/fungi. A total of 261 samples were analyzed, of which 86.6% (226/261) were eligible for the comparative ID and AST analyses. In comparison to the reference technique (culture-grown colonies), ID concordance of the FAST System LC and Sepsityper was 150/154 (97.4%) and 123/154 (79.9%), respectively, for Gram positive; 67/70 (95.7%) and 64/70 (91.4%), respectively, for Gram negative. For AST, categorical agreement (CA) of the FAST System LC in comparison to the routine workflow for Gram-positive bacteria was 96.1% and 98.7% for MicroScan and DD, respectively. Similar results were obtained for Gram-negative bacteria with 96.6% and 97.5% of CA for MicroScan and DD, respectively. Taken together, the FAST System LC allowed the laboratory to significantly reduce the time to obtain correct ID and AST (automated MicroScan) results 1 day earlier and represents a promising tool to expedite the processing of PBC

    Co-creation in service assemblages for service innovation : an empirical investigation

    Get PDF
    Co-creation could enhance service innovation (Perks, Gruber, and Edvardsson, 2012). Despite the research conducted on co-creation, the issue concerning how actors could form service system with high density still needs to be addressed (Michel, Vargo and Lusch, 2008). We conceptualized service system as an assemblage and investigated emergence and dynamic process of assemble and dissemble of service assemblages by drawing on theories of co-creation, affordance, task network and modularity and the notion of assemblage (Delanda, 2006). We developed a framework and empirically examined how to map the competences required for actors in a task network and how capacities could be optimally (re)configured as assemblages (clusters) for value co-creation. We demonstrated that the framework developed could be applied to formation, reformation of service assemblages for design of service offerings enabling optimal value co-creation

    Aetiological spectrum, injury characteristics and treatment outcome of multiple injuries at a tertiary care hospital in Tanzania

    Get PDF
    Background: Multiple injuries constitute a public health problem and contribute significantly to high morbidity, mortality and long-term disabilities worldwide. This study describes the etiological spectrum, injury characteristics and treatment outcome of multiple injuries at a tertiary care hospital in Tanzania.Methods: This was a descriptive prospective study involving multiple injury patients admitted to Bugando Medical Centre (BMC) from March 2013 to June 2013 inclusive.Results: Out of 712 trauma patients who were admitted to BMC during the study period, 150 (21.1%) had multiple injuries. Their male to female ratio was of 2.3:1. The majority of patients were in the second decade of life. Road traffic accidents (RTAs) were the most common (93.3%) cause of injury. The majority of patients, 142 (94.7%) sustained blunt injuries. Twelve (8.0%) patients had pre-hospital care. The limbs (89.2%) and the head (78.7%) were the most common body regions injured. The majority of patients (85.3%) sustained severe injuries (ISS ≥ 16). Out of 150 patients, 46 (30.7%) had 65 missed injuries. A total of 142 (94.7%) patients were treated surgically. Wound debridement (87.3%) was the most common surgical procedure performed. The complication and mortality rates were 54.7% and 38.7%, respectively. The overall median length of hospital stay (LOS) was 23 days. Co-morbid illness, HIV positivity, CD4 count (≤ 200 cells/μl), severe trauma (ISS ≥ 16), admission Systolic Blood Pressure &lt; 90 mmHg, missed injuries and surgical site infection significantly influenced mortality (P &lt; 0.001). Patients who developed complications and those who had long bone fractures stayed longer in the hospital (p &lt; 0.001).Conclusion: Road traffic accidents remain a major cause of multiple injuries at BMC and contribute significantly to unacceptably high morbidity and mortality. Urgent preventive measures targeting at reducing the occurrence of road traffic accidents is necessary to reduce the incidence of multiple injuries in our centre
    • …
    corecore