10 research outputs found

    Hydrogeological modelling of the Atlantis aquifer for management support to the Atlantis Water Supply Scheme

    Get PDF
    The Atlantis Water Supply Scheme (AWSS, Western Cape, South Africa) has been in operation for about 40 years as a means to supply and augment drinking water to the town of Atlantis via managed aquifer recharge (MAR). In this study, the numerical model MODFLOW for groundwater flow and contaminant transport was used in support of the management of the AWSS. The aims were: (i) to calibrate the MODFLOW model for the MAR site at Atlantis; (ii) to run realistic scenarios that cannot be replicated through experiments; and (iii) to make recommendations in support of efficient and sustainable management of the aquifer. MODFLOW was calibrated through comparison of observed and simulated groundwater levels (R2 between 0.663 and 0.995). Scenario simulations indicated possible drawdowns between < 5 m (low groundwater abstraction and low artificial recharge of groundwater through infiltration basins) and > 20 m (high abstraction and high artificial recharge) at localized areas of the Witzand wellfield. At Silwerstroom, large drawdown levels were not predicted to occur, so this wellfield could be exploited more without affecting the sustainability of the groundwater resource. Groundwater moves from the infiltration basins towards the Witzand wellfield at a rate of 120–150 m·a-1. The modelling results supported recommendations for balancing groundwater abstraction and artificial recharge volumes, monitoring the water balance components of the system, the potential risks of groundwater contamination and the delineation of groundwater protection zones.Keywords: Groundwater abstraction; managed aquifer recharge; MODFLOW; particle tracking; scenario modellin

    A Novel Theory for the Scattering of P-Polarized Hermite-Gaussian Electromagnetic Beams by a Double Metallic Nano-Slit

    Get PDF
    We present a rigorous theory for oblique incident Hermite-Gaussian beams, diffracted by two optical nano-slits of width and separation d, in a thick metallic screen for the case of polarization TM (P). The far field spectra as a function of several opto-geometrical parameters, wavelength λ, slit width , separation d, incidence angle Ξ୧ and Hermite order m is analyzed. In the vectorial diffraction region given when λ/ >0.2, where is the incident wavelength and as a function of the separation between slits d; we have numerically analyzed: the far field spectra, the energy diffracted along the incident beam direction (Eà­§), and the validity of an approximate diffraction (scalar) property, namely Eà­§ = Nτ/λUniversidad AutĂłnoma del Estado de MĂ©xic

    Four decades of water recycling in Atlantis (Western Cape, South Africa): Past, present and future

    Get PDF
    The primary aquifer at Atlantis (Western Cape, South Africa) is ideally suited for water supply and the indirect recycling of urban stormwater runoff and treated domestic wastewater for potable purposes. The relatively thin, sloping aquifer requires careful management of the artificial recharge and abstraction for balancing water levels. Water quality management is a further key issue at Atlantis for ensuring the highest quality potable water. Groundwater quality varies from point to point in the aquifer, while urban runoff and wastewater qualities vary greatly. The layout of the town allows for the separation of stormwater from the residential and industrial areas as well as separate treatment of domestic and industrial wastewater. This permits safe artificial recharge of the various water quality portions at different points in the aquifer, either for recycling or for preventing seawater intrusion. All of the management actions are dependent on detailed data collection and this paper describes the various parts of the system, describes the data collection activities, and provides results of the monitoring and aquifer responses over the past four decades. Challenges related to iron fouling of production boreholes are also described. The presence of emerging contaminants was studied in 2008 but requires follow-up research for establishing the extent of any possible threat to water recycling. In order to address the shortcomings of the system a risk management plan based on the Hazard Analysis and Critical Control Points approach was developed. Lessons learnt from the Atlantis experience can be transferred to other potential sites for establishment of similar systems in arid and semi-arid areas of South Africa and the African continent.Keywords: Atlantis, managed aquifer recharge, water recycling, groundwater, stormwater, wastewater, monitorin

    In situ denitrification of nitrate rich groundwater in Marydale, Northern Cape

    Get PDF
    Thesis (MScAgric (Soil Science))--University of Stellenbosch, 2007.South Africa is a water scarce country and in certain regions the quantity of surface water is insufficient to provide communities with their domestic water needs. In many arid areas groundwater is often the sole source of water. This total dependence means that groundwater quality is of paramount importance. A high nitrate concentration in groundwater is a common cause of water being declared unfit for use and denitrification has been proposed as a potential remedy. In groundwater of the Marydale district in the Northern Cape Province, nitrate levels are high enough to be of concern for domestic and livestock consumption. A review of the literature indicates that bacterial denitrification of groundwater can be achieved in situ by using a suitable energy substrate. The technology has been tested elsewhere in the world but more certainty is needed on whether it is a feasible option for local groundwater remediation using local, cost-effective energy substrates and exploiting bacterial populations present naturally in the regolith. The objective of this study was to perform denitrification experiments by laboratory incubation using soil and groundwater samples collected in Marydale in order to determine; 1) The effectiveness of different carbon sources; 2) The effect of using soil sampled at different depths; 3) The effect of C:N ratio of the carbon substrate; and 4) The quality of resultant water. Various experiments were set up using 10 g soil and 40 mL groundwater with different concentrations of carbon sources (sawdust, glucose, maize meal and methanol). All experiments were done under a nitrogen atmosphere to exclude oxygen and temperature was kept constant at 23 °C. Indicator parameters were selected based on literature review, and major cations and anions and some metals were analysed for initially and at selected times during each experiment to evaluate whether major ion chemistry was changing over time. Parameters analysed in supernatant solutions after varying periods of time to indicate progress of denitrification and reduction included nitrate, nitrite, sulfate, alkalinity, chloride, acetate, basic cations, ammonium, pH, electrical conductivity, dissolved organic carbon, heteThe Marydale groundwater in some boreholes is of predominantly NaCl type and the nitrate concentration of 19-32 mg/L as N exceeds ideal limits for drinking water of 6mg/L as N . Two soil materials were sampled at different depths from a red sand overlying calcrete (Plooysburg form, Family Py1000). The incubation experiments showed denitrification was complete within a period of between 1 and 6 weeks depending on the carbon substrate and C:N used. Higher rates of nitrate removal were achieved where greater C:N was used. Readily degradable carbon substrates e.g. glucose showed rapid denitrification, while sawdust, a slowly degradable substrate, effected slower denitrification, hence it was concluded that intermediately degradable carbon substrates e.g. wheat straw may prove more suitable. Use of shallower soil material containing initially higher nitrate levels resulted in better denitrification rates, however, both soil materials effected denitrification.. Heterotrophic plate counts increased with time, this presence and growth of heterotrophic bacteria confirmed that conditions were optimum for growth and denitrification and that inoculation with bacteria is not a requirement for in situ denitrification. Dissolved organic carbon (DOC) concentration could be directly correlated to the initial input of carbon substrate as soil and groundwater lacked organic material. Results showed that reaction products such as acetate and nitrite, and basic cation concentrations were elevated in the supernatant solution in preliminary experiments. This was interpreted to be attributed to incomplete oxidation of organic material and excess soluble and available carbon for reaction. Cation concentrations were interpreted to have resulted from a decrease in pH brought on by organic acids produced during denitrification. The method used showed specificity, as the only parameters affected by the denitrification experiment were DOC, alkalinity, nitrite, nitrate, and the heterotrophic plate count. The DOC and HPC did not comply with acceptable levels for drinking water. Removal of HPC by boiling or chlorinating is required to ensure that the resultant water composition is of potable quality. For further research with slowly degradable carbon sources it is recommended that a C:N ratio of more than 12 should be employed, and monitoring should focus on soluble carbon nitrate, nitrite, and heterotrophic plate count. The study confirmed that denitrification of this groundwater with a range of carbon sources is possible within a short period of anaerobic contact with local soil material. With sufficient knowledge of the characteristics of the soil and groundwater in the area, establishment of a working in situ denitrification plant is probably feasible

    Depressive Symptoms and Circadian Activity Rhythm Disturbances in Community-Dwelling Older Women

    No full text
    OBJECTIVES: Aging is associated with changes in circadian rhythms. Current evidence supports a role for circadian rhythms in the pathophysiology of depression. However, little is known about the relationship between depressive symptoms and circadian activity rhythms in older adults. We examined this association in community-dwelling older women. METHODS: We performed a cross-sectional analysis of 3,020 women (mean age: 83.55 ± 3.79 years) enrolled in the Study of Osteoporotic Fractures. Depressive symptoms were assessed with the Geriatric Depression Scale categorizing participants as “normal” (0–2; referent group, N = 1,961), “some depressive symptoms” (3–5, N = 704), or “depressed” (≄6, N = 355). Circadian activity rhythm variables were measured using wrist actigraphy. RESULTS: In age-adjusted and Study of Osteoporotic Fractures site–adjusted models, greater levels of depressive symptoms were associated with decreased amplitude (height; df = 3,014, t = −11.31, p for linear trend <0.001), pseudo F-statistic (robustness; df =3,014, t =−8.07, p for linear trend <0.001), and mesor (mean modeled activity; df = 3014, t = −10.36, p for linear trend <0.001) of circadian activity rhythms. Greater levels of depressive symptoms were also associated with increased odds of being in the lowest quartile for amplitude (df =1, χ(2) =9240, p for linear trend <0.001), pseudo F-statistic (df =1, χ(2) =49.73, p for linear trend <0.001), and mesor (df =1, χ(2) =81.12, p for linear trend <0.001). These associations remained significant in multivariate models. Post-hoc analyses comparing mean amplitude, mesor, and pseudo F-statistic values pair-wise between depression-level groups revealed significant differences between women with “some depressive symptoms” and the “normal” group. CONCLUSION: These data suggest a graded association between greater levels of depressive symptoms and more desynchronization of circadian activity rhythms in community-dwelling older women. This association was observed even for women endorsing subthreshold levels of depressive symptoms
    corecore