87 research outputs found

    Revisiting the ABC flow dynamo

    Full text link
    The ABC flow is a prototype for fast dynamo action, essential to the origin of magnetic field in large astrophysical objects. Probably the most studied configuration is the classical 1:1:1 flow. We investigate its dynamo properties varying the magnetic Reynolds number Rm. We identify two kinks in the growth rate, which correspond respectively to an eigenvalue crossing and to an eigenvalue coalescence. The dominant eigenvalue becomes purely real for a finite value of the control parameter. Finally we show that even for Rm = 25000, the dominant eigenvalue has not yet reached an asymptotic behaviour. Its still varies very significantly with the controlling parameter. Even at these very large values of Rm the fast dynamo property of this flow cannot yet be established

    A Micro-glitch in the Millisecond Pulsar B1821-24 in M28

    Full text link
    We report on the observation of a very small glitch observed for the first time in a millisecond pulsar, PSR B1821-24 located in the globular cluster M28. Timing observations were mainly conducted with the Nancay radiotelescope (France) and confirmation comes from the 140ft radiotelescope at Green Bank and the new Green Bank Telescope data. This event is characterized by a rotation frequency step of 3 nHz, or 10^-11 in fractional frequency change along with a short duration limited to a few days or a week. A marginally significant frequency derivative step was also found. This glitch follows the main characteristics of those in the slow period pulsars, but is two orders of magnitude smaller than the smallest ever recorded. Such an event must be very rare for millisecond pulsars since no other glitches have been detected when the cumulated number of years of millisecond pulsar timing observations up to 2001 is around 500 for all these objects. However, pulsar PSR B1821-24 is one of the youngest among the old recycled ones and there is likely a correlation between age, or a related parameter, and timing noise. While this event happens on a much smaller scale, the required adjustment of the star to a new equilibrium figure as it spins down is a likely common cause for all glitches.Comment: Accepted by ApJ Letters, 5 pages, 2 figures, LaTex (uses emulateapj.sty

    Evaluation of the Efficiency of Aqueous Extact of Neem Fruits on Insect Pest of Rice in Rice Agroecosystem of Maga in the Far North Region of Cameroon

    Full text link
    The chemical fight against insects pest causes many problems on the biodiversity of ecosystems, destabilizes the trophic level of the ecosystem and has harmful effects on the on health human. Mean while the biological fight using plants extractions can equally play the same role of killing pest, reason why the present study which was carried out in the irrigated perimeters of Maga in the Far North region of Cameroon, have as principal objective to evaluate the aqueous extraction of neem fruit on the insects pest of rice. The specific objectives were to know the biological diversity of insect pest in the irrigated perimeters of Maga, and their repartitioning in the phenological stages, again, to see the effects of the aqueous extractions of the neem fruits on the insects pest per variety and in function of the phenological stages, also to evaluate the damages cause by insects pest during the talling stage in function of the varieties, finally, to evaluate loss cause by the insects pest. The study was made on two rice varieties which were IR46 and NERICA3 in a split plot disposition. The capturing of the insects was done with the help of a sweep net and the identification of the species was done with the help of an entomological buttle, the identification key of insects by Heinrich (1993), Hill (1983), Heinrichs and Barrion (2004) and the families recognition keys by Delvare and Aberlenc (1989).The method of Breniere permited the estimation of loss of output at the talling and harvesting stages of rice caused by the insect pest. The analysis of variance of the result was done using SPSS 20. In the class of insects, twenty two species of insects fall in twenty families divided in seven orders were collected. Among the captured insects, we investigated fourteen insects which were pest. The biological fight have shown an effectiveness in the nursery, talling, and a positive and non negligible effects on the reduction insects pest in the heading and maturation stages and thus has permitted the reduction of damages from insects on the rice plants

    Detection of decametre-wavelength pulsed radio emission of 40 known pulsars

    Get PDF
    International audienceThe study of pulsars at the lowest radio frequencies observable from the ground (10-30 MHz) is complicated by strong interstellar (dispersion, scattering) and ionospheric (scintillation, refraction) propagation effects, as well as intense Galactic background noise and interference. However, it permits us to measure interstellar plasma parameters (the effects of which increase by a power of two to >4 times the wavelength), the spectrum and the pulse profile at low frequencies more accurately. Up to now, only ˜10 pulsars have been successfully detected at these frequencies. The recent upgrade of the receivers at the Ukrainian T-shaped Radio telescope, second modification (UTR-2) has increased its sensitivity and motivated a new search for pulsed radio emissions. In this work we carried out a survey of known pulsars with declination above -10°, period >0.1 s and dispersion measure (DM) < 30 pc cm-3, i.e. a sample of 74 sources. Our goal was either to detect pulsars not recorded before in the decametre range or to identify factors that prevent their detection. As a result, we have detected the radio emission of 40 pulsars, i.e. 55 per cent of the observed sample. For 30 of them, this was a first detection at these frequencies. Parameters of their average profiles have been calculated, including the intrinsic widening of the pulse (not due to interstellar scattering) with decreasing frequency. Furthermore, two pulsars beyond the selected DM (B0138+59 with DM ≈ 35 pc cm-3 and B0525+21 with DM ≈51 pc cm-3) were also detected. Our results indicate that there is still room to detect new transient and pulsed sources with low-frequency observations

    Two Millisecond Pulsars Discovered by the PALFA Survey and a Shapiro Delay Measurement

    Get PDF
    International audienceWe present two millisecond pulsar discoveries from the PALFA survey of the Galactic plane with the Arecibo telescope. PSR J1955+2527 is an isolated pulsar with a period of 4.87 ms, and PSR J1949+3106 has a period of 13.14 ms and is in a 1.9 day binary system with a massive companion. Their timing solutions, based on 4 years of timing measurements with the Arecibo, Green Bank, Nançay , and Jodrell Bank telescopes, allow precise determination of spin and astrometric parameters, including precise determinations of their proper motions. For PSR J1949+3106, we can clearly detect the Shapiro delay. From this we measure the pulsar mass to be 1.47 +0.43 −0.31 M , the companion mass to be 0.85 +0.14 −0.11 M , and the orbital inclination to be i = 79.9 −1.9 +1.6 deg, where uncertainties correspond to ±1σ confidence levels. With continued timing, we expect to also be able to detect the advance of periastron for the J1949+3106 system. This effect, combined with the Shapiro delay, will eventually provide very precise mass measurements for this system and a test of general relativity

    A millisecond pulsar in an extremely wide binary system

    Get PDF
    International audienceWe report on 22 yrs of radio timing observations of the millisecond pulsar J1024−0719 by the telescopes participating in the European Pulsar Timing Array (EPTA). These observations reveal a significant second derivative of the pulsar spin frequency and confirm the discrepancy between the parallax and Shklovskii distances that has been reported earlier. We also present optical astrometry, photometry and spectroscopy of 2MASS J10243869−0719190. We find that it is a low-metallicity main-sequence star (K7V spectral type, [M/H] = −1.0, T eff = 4050 ± 50 K) and that its position, proper motion and distance are consistent with those of PSR J1024−0719. We conclude that PSR J1024−0719 and 2MASS J10243869−0719190 form a common proper motion pair and are gravitationally bound. The gravitational interaction between the main-sequence star and the pulsar accounts for the spin frequency derivatives , which in turn resolves the distance discrepancy. Our observations suggest that the pulsar and main-sequence star are in an extremely wide (P b > 200 yr) orbit. Combining the radial velocity of the companion and proper motion of the pulsar, we find that the binary system has a high spatial velocity of 384 ± 45 km s −1 with respect to the local standard of rest and has a Galactic orbit consistent with halo objects. Since the observed main-sequence companion star cannot have recycled the pulsar to millisecond spin periods, an exotic formation scenario is required. We demonstrate that this extremely wide-orbit binary could have evolved from a triple system that underwent an asymmetric supernova explosion, though find that significant fine-tuning during the explosion is required. Finally, we discuss the implications of the long period orbit on the timing stability of PSR J1024−0719 in light of its inclusion in pulsar timing arrays

    High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array

    Get PDF
    International audienceWe report on timing, flux density, and polarimetric observations of the transient magnetar and 5.54 s radio pulsar XTE J1810-197 using the GBT, Nancay, and Parkes radio telescopes beginning in early 2006, until its sudden disappearance as a radio source in late 2008. Repeated observations through 2016 have not detected radio pulsations again. The torque on the neutron star, as inferred from its rotation frequency derivative f-dot, decreased in an unsteady manner by a factor of 3 in the first year of radio monitoring. In contrast, during its final year as a detectable radio source, the torque decreased steadily by only 9%. The period-averaged flux density, after decreasing by a factor of 20 during the first 10 months of radio monitoring, remained steady in the next 22 months, at an average of 0.7+/-0.3 mJy at 1.4 GHz, while still showing day-to-day fluctuations by factors of a few. There is evidence that during this last phase of radio activity the magnetar had a steep radio spectrum, in contrast to earlier behavior. There was no secular decrease that presaged its radio demise. During this time the pulse profile continued to display large variations, and polarimetry indicates that the magnetic geometry remained consistent with that of earlier times. We supplement these results with X-ray timing of the pulsar from its outburst in 2003 up to 2014. For the first 4 years, XTE J1810-197 experienced non-monotonic excursions in f-dot by at least a factor of 8. But since 2007, its f-dot has remained relatively stable near its minimum observed value. The only apparent event in the X-ray record that is possibly contemporaneous with the radio shut-down is a decrease of ~20% in the hot-spot flux in 2008-2009, to a stable, minimum value. However, the permanence of the high-amplitude, thermal X-ray pulse, even after the radio demise, implies continuing magnetar activity

    The International Pulsar Timing Array: First data release

    Get PDF
    International audienceThe highly stable spin of neutron stars can be exploited for a variety of (astro)physical investigations. In particular, arrays of pulsars with rotational periods of the order of milliseconds can be used to detect correlated signals such as those caused by gravitational waves. Three such 'pulsar timing arrays' (PTAs) have been set up around the world over the past decades and collectively form the 'International' PTA (IPTA). In this paper, we describe the first joint analysis of the data from the three regional PTAs, i.e. of the first IPTA data set. We describe the available PTA data, the approach presently followed for its combination and suggest improvements for future PTA research. Particular attention is paid to subtle details (such as underestimation of measurement uncertainty and long-period noise) that have often been ignored but which become important in this unprecedentedly large and inhomogeneous data set. We identify and describe in detail several factors that complicate IPTA research and provide recommendations for future pulsar timing efforts. The first IPTA data release presented here (and available on-line) is used to demonstrate the IPTA's potential of improving upon gravitational-wave limit

    A Population of Gamma-Ray Millisecond Pulsars Seen with the Fermi Large Area Telescope

    Get PDF
    Gamma-Ray Pulsar Bonanza Most of the pulsars we know about were detected through their radio emission; a few are known to pulse gamma rays but were first detected at other wavelengths (see the Perspective by Halpern ). Using the Fermi Gamma-Ray Space Telescope, Abdo et al. (p. 840 , published online 2 July; see the cover) report the detection of 16 previously unknown pulsars based on their gamma-ray emission alone. Thirteen of these coincide with previously unidentified gamma-ray sources, solving the 30-year-old mystery of their identities. Pulsars are fast-rotating neutron stars. With time they slow down and cease to radiate; however, if they are in a binary system, they can have their spin rates increased by mass transfer from their companion stars, starting a new life as millisecond pulsars. In another study, Abdo et al. (p. 845 ) report the detection of gamma-ray emission from the globular cluster 47 Tucanae, which is coming from an ensemble of millisecond pulsars in the cluster's core. The data imply that there are up to 60 millisecond pulsars in 47 Tucanae, twice as many as predicted by radio observations. In a further companion study, Abdo et al. (p. 848 , published online 2 July) searched Fermi Large Area Telescope data for pulsations from all known millisecond pulsars outside of stellar clusters, finding gamma-ray pulsations for eight of them. Their properties resemble those of other gamma-ray pulsars, suggesting that they share the same basic emission mechanism. Indeed, both sets of pulsars favor emission models in which the gamma rays are produced in the outer magnetosphere of the neutron star
    corecore