96 research outputs found
Design and synthesis of liquid crystalline phthalocyanines: Combinations of substituents that promote the discotic nematic mesophase
A homologous series of fourteen metal-free 1,4,8,11,15,18-hexakis(alkyl)-22-methyl-25-hydroxyalkylphthalocyanine derivatives has been investigated to interogate the interlay of the roles of the six alkyl chains and the length of the hydroxyalkyl chain in promoting thermotropic nematic liquid crystalline behavior. All but two of the compounds form mesophases. Eight of the remaining compounds exhibit only columnar mesophases which is common among liquid crystalline phthalocyanines. However, four examples form the rare discotic nematic mesophase. A general structural feature is deduced in that this rare phase is favoured when the number of linking atoms in the hydroxyalkyl chain exceeds twice the number of carbon atoms in any one of the six common alkyl chains, disrupting the columnar packing arrangement. In addition, zinc and copper metallated examples of one of the metal-free discotic nematic compounds were prepared of which the zinc metallated compound formed a nematic phase whereas the copper containing analogue favoured columnar mesophase formation
Towards optimisation of surface enhanced photodynamic therapy of breast cancer cells using gold nanoparticle-photosensitiser conjugates
Gold nanoparticles (AuNPs; ca. 4 nm) were synthesised and functionalised with a mixed monolayer of polyethylene glycol (PEG) and one of two zinc phthalocyanines (ZnPcs), the difference between the two molecules was the length of the carbon chain that connects the Pc to the gold core. The chain was composed of either three (C3Pc) or eleven (C11Pc) carbon atoms. The C11Pc photosensitiser displayed higher fluorescence emission intensity than the C3Pc in solution. By contrast, the C3Pc photosensitiser exhibited higher fluorescence when bound to the surface of the AuNPs than the C11Pc, despite the shorter carbon chain which was expected to quench the fluorescence. In addition, the C3Pc nanoparticle conjugates exhibited an enhancement in the production of singlet oxygen (1O2). The metal-enhanced 1O2 production led to a remarkable photodynamic efficacy for the treatment of human breast cancer cells
Unlocking Structural Diversity in Gold(III) Hydrides: Unexpected Interplay of cis/trans-Influence on Stability, Insertion Chemistry, and NMR Chemical Shifts
The synthesis of new families of stable or at least spectroscopically observable gold(III) hydride complexes is reported, including anionic cis-hydrido chloride, hydrido aryl and cis-dihydride complexes. Reactions between (C^C)AuCl(PR3) and LiHBEt3 afford the first examples of gold(III) phosphino hydrides (C^C)AuH(PR3) (R = Me, Ph, p-tolyl; C^C = 4,4′-di-tert-butylbiphenyl-2,2′-diyl). The X-ray structure of (C^C)AuH(PMe3) was determined. LiHBEt3 reacts with (C^C)AuCl(py) to give [(C^C)Au(H)Cl]–, whereas (C^C)AuH(PR3) undergoes phosphine displacement, generating the dihydride [(C^C)AuH2]-. Monohydrido complexes hydroaurate dimethylacetylene dicarboxylate to give Z-vinyls. (C^N^C)Au pincer complexes give the first examples of gold(III) bridging hydrides. Stability, reactivity and bonding characteristics of Au(III)-H complexes crucially depend on the interplay between cis and trans-influence. Remarkably, these new gold(III) hydrides extend the range of observed NMR hydride shifts from δ 8.5 to +7 ppm. Relativistic DFT calculations show that the origin of this wide chemical shift variability as a function of the ligands depends on the different ordering and energy gap between “shielding” Au(dπ)-based orbitals and “deshielding” σ(Au-H)-type MOs, which are mixed to some extent upon inclusion of spin-orbit (SO) coupling. The resulting 1H hydride shifts correlate linearly with the DFT optimized Au-H distances and Au-H bond covalency. The effect of cis ligands follows a nearly inverse ordering to that of trans ligands. This study appears to be the first systematic delineation of cis ligand influence on M-H NMR shifts and provides the experimental evidence for the dramatic change of the 1H hydride shifts, including the sign change, upon mutual cis and trans ligand alternation
Gold(III) alkyne complexes: Bonding and reaction pathways
The synthesis and characterization of hitherto hypothetical AuIII π-alkyne complexes is reported. Bonding and stability depend strongly on the trans effect and steric factors. Bonding characteristics shed light on the reasons for the very different stabilities between the classical alkyne complexes of PtII and their drastically more reactive AuIII congeners. Lack of back-bonding facilitates alkyne slippage, which is energetically less costly for gold than for platinum and explains the propensity of gold to facilitate C−C bond formation. Cycloaddition followed by aryl migration and reductive deprotonation is presented as a new reaction sequence in gold chemistry
Compact modeling of organic thin film transistors with solution processed octadecyl substituted tetrabenzotriazaporphyrin as an active layer
Using 70nm thick spin-coated film of newly synthesized octadecyl substituted copper tetrabenzotriazaporphyrin (10CuTBTAP) as an active layer on a highly doped silicon (110) gate electrode substrates, output characteristics and transfer characteristics of bottom-gate bottom-contact organic thin film transistors have been measured at room temperature. A compact model for thin film transistors has been employed as a part of circuit design tool to extract device parameters such as the charge carrier mobility μ, the threshold voltage VT and the contact resistances. Parallel measurements and analysis were performed on similarly constructed devices with a copper phthalocyanine analogue (10CuPc). The results reveal that the 10CuPc layer is relatively more susceptible to trapping degradation near the gate region than a 10CuTBTAP layer, which is significant in order to achieve stability in these transistors. The application of the simple square law in the classical MOS model provides a quicker but approximate interpretation of the transistor performance without providing information on the gate voltage dependence of mobility and the effects of the contact regions. In this comparative study, the analysis of the contact regions is found to be very important for determining the difference in the performance of two transistors
Targeted photodynamic therapy of breast cancer cells using lactose-phthalocyanine functionalized gold nanoparticles
Gold nanoparticles (AuNPs), which have been widely used for the delivery of photosensitizers for photodynamic therapy (PDT) of cancer, can be dispersed in aqueous solutions, improving the delivery of the hydrophobic photosensitizer into the body. Furthermore, the large surface of AuNPs can be functionalized with a variety of ligands, including proteins, nucleic acids and carbohydrates, that allow selective targeting to cancer tissue. In this study, gold nanoparticles were functionalized with a mixed monolayer of a zinc phthalocyanine and a lactose derivative. For the first time, a carbohydrate was used with a dual purpose, as the stabilizing agent of the gold nanoparticles in aqueous solutions and as the targeting agent for breast cancer cells. The functionalization of the phthalocyanine-AuNPs with lactose led to the production of water-dispersible nanoparticles that are able to generate singlet oxygen and effect cell death upon irradiation. The targeting ability of lactose of the lactose-phthalocyanine functionalized AuNPs was studied in vitro towards the galectin-1 receptor on the surface of breast cancer cells. The targeting studies showed the exciting potential of lactose as a specific targeting agent for galactose-binding receptors overexpressed on breast cancer cells
Symmetry-breaking charge-separation in a subphthalocyanine dimer resolved by two-dimensional electronic spectroscopy
Understanding the role of structural and environmental dynamics in the excited state properties of strongly coupled chromophores is of paramount importance in molecular photonics. Ultrafast, coherent, and multidimensional spectroscopies have been utilized to investigate such dynamics in the simplest model system, the molecular dimer. Here, we present a half-broadband two-dimensional electronic spectroscopy (HB2DES) study of the previously reported ultrafast symmetry-breaking charge separation (SB-CS) in the subphthalocyanine oxo-bridged homodimer μOSubPc2. Electronic structure calculations and 2D cross-peaks reveal the dimer’s excitonic structure, while ultrafast evolution of the multidimensional spectra unveils subtle features of structural relaxation, solvation dynamics, and inhomogeneous broadening in the SB-CS. Analysis of coherently excited vibrational motions reveals dimer-specific low-frequency Raman active modes coupled to higher-frequency vibrations localized on the SubPc cores. Finally, beatmap amplitude distributions characteristic of excitonic dimers with multiple bright states are reported and analyzed
Cancer targeting with biomolecules: a comparative study of photodynamic therapy efficacy using antibody or lectin conjugated phthalocyanine-PEG gold nanoparticles
The functionalisation of therapeutic nanoparticle constructs with cancer-specific biomolecules can enable selective tumour accumulation and targeted treatment. Water soluble gold nanoparticles (ca. 4 nm) stabilised by a mixed monolayer of a hydrophobic zinc phthalocyanine photosensitiser (C11Pc) and hydrophilic polyethylene glycol (PEG) have been prepared. The C11Pc-PEG gold nanoparticle constructs were further functionalised with jacalin, a lectin specific for the cancer-associated Thomsen–Friedenreich (T) carbohydrate antigen, or with monoclonal antibodies specific for the human epidermal growth factor receptor-2 (HER-2). The two biofunctionalised nanoparticle conjugates produced similar levels of singlet oxygen upon irradiation at 633 nm. Importantly, both nanoparticle conjugates demonstrated extensive, yet comparable, phototoxicity in HT-29 colorectal adenocarcinoma cells (80–90%) and in SK-BR-3 breast adenocarcinoma cells (>99%). Non-conjugated C11Pc-PEG gold nanoparticles were only minimally phototoxic. Lysosomal colocalisation studies performed with the HT-29 colon cancer cells and the SK-BR-3 breast cancer cells revealed that both nanoparticle conjugates were partially localised within acidic organelles, which is typical of receptor-mediated endocytosis. The similarity of the targeted PDT efficacy of the two biofunctionalised C11Pc-PEG gold nanoparticles is discussed with respect to targeting ligand binding affinity and cell surface antigen density as key determinants of targeting efficiency. This study highlights how targeting small cell-surface molecules, such as the T antigen, can mediate a selective photodynamic treatment response which is similar to that achieved when targeting overexpressed protein receptors, such as HER-2. The high prevalence of the T antigen present on the cellular surface of primary tumours emphasises the broad potential applications for lectin-targeted therapies
Electron charge transport in non-peripherally substituted copper phthalocyanine
Bottom-gate, bottom-contact organic thin film transistors (OTFTs) were fabricated using solvent soluble copper-1,4,8,11,15,18,22,25-octakis(hexyl)phthalocyanine as the active semiconductor layer. The compound was deposited as 70 nm thick spin-coated films onto gold source-drain electrodes supported on octadecyltrichlorosilane treated 250 nm thick SiO2 gate insulator. The analysis of experimental results showed the n-type field effect behaviour. Devices annealed at 100 oC under vacuum were found to exhibit the field-effect mobility of 0.0989 cm2 V-1 s-1, with an on/off current modulation ratio of ∼106, a reduced threshold voltage of 0.7 V and a sub-threshold swing of 2.12 V decade-1. The variations in surface morphology of the devices are found reflected considerably in the electrical measurements. The device contact resistance was found to be decreased as the gate bias increased and also with the annealing
A liquid crystalline copper phthalocyanine derivative for high performance organic thin film transistors
This journal is © The Royal Society of Chemistry 2012Bottom-gate, bottom-contact organic thin film transistors (OTFTs) were fabricated using solvent soluble copper 1,4,8,11,15,18,22,25-octakis(hexyl)phthalocyanine as the active semiconductor layer.
The compound was deposited as 70 nm thick spin-coated films onto gold source–drain electrodes supported on octadecyltrichlorosilane treated 250 nm thick SiO2 gate insulators. The performance of the OTFTs was optimised by investigating the effects of vacuum annealing of the films at temperatures between 50 0C and 200 0C, a range that included the thermotropic mesophase of the bulk material. These effects were monitored by ultraviolet-visible absorption spectroscopy, atomic force microscopy and XRD measurements. Device performance was shown to be dependent upon the annealing temperature due to structural changes of the film. Devices heat treated at 100 0C under vacuum (≥10-7 mbar) were found to exhibit the highest field-effect mobility, 0.7 cm2 V^-1 s^-1, with an on–off current modulation ratio of~107, a reduced threshold voltage of 2.0 V and a sub-threshold swing of 1.11 V per decade.UK Technology Strategy Board (Project no: TP/6/EPH/6/S/K2536J) and UK National Measurement System (Project IRD C02 ‘‘Plastic
Electronics’’, 2008–2011)
- …
