64 research outputs found

    Design and synthesis of liquid crystalline phthalocyanines: Combinations of substituents that promote the discotic nematic mesophase

    Get PDF
    A homologous series of fourteen metal-free 1,4,8,11,15,18-hexakis(alkyl)-22-methyl-25-hydroxyalkylphthalocyanine derivatives has been investigated to interogate the interlay of the roles of the six alkyl chains and the length of the hydroxyalkyl chain in promoting thermotropic nematic liquid crystalline behavior. All but two of the compounds form mesophases. Eight of the remaining compounds exhibit only columnar mesophases which is common among liquid crystalline phthalocyanines. However, four examples form the rare discotic nematic mesophase. A general structural feature is deduced in that this rare phase is favoured when the number of linking atoms in the hydroxyalkyl chain exceeds twice the number of carbon atoms in any one of the six common alkyl chains, disrupting the columnar packing arrangement. In addition, zinc and copper metallated examples of one of the metal-free discotic nematic compounds were prepared of which the zinc metallated compound formed a nematic phase whereas the copper containing analogue favoured columnar mesophase formation

    Unlocking Structural Diversity in Gold(III) Hydrides: Unexpected Interplay of cis/trans-Influence on Stability, Insertion Chemistry, and NMR Chemical Shifts

    Get PDF
    The synthesis of new families of stable or at least spectroscopically observable gold(III) hydride complexes is reported, including anionic cis-hydrido chloride, hydrido aryl and cis-dihydride complexes. Reactions between (C^C)AuCl(PR3) and LiHBEt3 afford the first examples of gold(III) phosphino hydrides (C^C)AuH(PR3) (R = Me, Ph, p-tolyl; C^C = 4,4′-di-tert-butylbiphenyl-2,2′-diyl). The X-ray structure of (C^C)AuH(PMe3) was determined. LiHBEt3 reacts with (C^C)AuCl(py) to give [(C^C)Au(H)Cl]–, whereas (C^C)AuH(PR3) undergoes phosphine displacement, generating the dihydride [(C^C)AuH2]-. Monohydrido complexes hydroaurate dimethylacetylene dicarboxylate to give Z-vinyls. (C^N^C)Au pincer complexes give the first examples of gold(III) bridging hydrides. Stability, reactivity and bonding characteristics of Au(III)-H complexes crucially depend on the interplay between cis and trans-influence. Remarkably, these new gold(III) hydrides extend the range of observed NMR hydride shifts from δ 8.5 to +7 ppm. Relativistic DFT calculations show that the origin of this wide chemical shift variability as a function of the ligands depends on the different ordering and energy gap between “shielding” Au(dπ)-based orbitals and “deshielding” σ(Au-H)-type MOs, which are mixed to some extent upon inclusion of spin-orbit (SO) coupling. The resulting 1H hydride shifts correlate linearly with the DFT optimized Au-H distances and Au-H bond covalency. The effect of cis ligands follows a nearly inverse ordering to that of trans ligands. This study appears to be the first systematic delineation of cis ligand influence on M-H NMR shifts and provides the experimental evidence for the dramatic change of the 1H hydride shifts, including the sign change, upon mutual cis and trans ligand alternation

    Gold(III) alkyne complexes: Bonding and reaction pathways

    Get PDF
    The synthesis and characterization of hitherto hypothetical AuIII π-alkyne complexes is reported. Bonding and stability depend strongly on the trans effect and steric factors. Bonding characteristics shed light on the reasons for the very different stabilities between the classical alkyne complexes of PtII and their drastically more reactive AuIII congeners. Lack of back-bonding facilitates alkyne slippage, which is energetically less costly for gold than for platinum and explains the propensity of gold to facilitate C−C bond formation. Cycloaddition followed by aryl migration and reductive deprotonation is presented as a new reaction sequence in gold chemistry

    Towards optimisation of surface enhanced photodynamic therapy of breast cancer cells using gold nanoparticle-photosensitiser conjugates

    Get PDF
    Gold nanoparticles (AuNPs; ca. 4 nm) were synthesised and functionalised with a mixed monolayer of polyethylene glycol (PEG) and one of two zinc phthalocyanines (ZnPcs), the difference between the two molecules was the length of the carbon chain that connects the Pc to the gold core. The chain was composed of either three (C3Pc) or eleven (C11Pc) carbon atoms. The C11Pc photosensitiser displayed higher fluorescence emission intensity than the C3Pc in solution. By contrast, the C3Pc photosensitiser exhibited higher fluorescence when bound to the surface of the AuNPs than the C11Pc, despite the shorter carbon chain which was expected to quench the fluorescence. In addition, the C3Pc nanoparticle conjugates exhibited an enhancement in the production of singlet oxygen (1O2). The metal-enhanced 1O2 production led to a remarkable photodynamic efficacy for the treatment of human breast cancer cells

    Electron charge transport in non-peripherally substituted copper phthalocyanine

    Get PDF
    Bottom-gate, bottom-contact organic thin film transistors (OTFTs) were fabricated using solvent soluble copper-1,4,8,11,15,18,22,25-octakis(hexyl)phthalocyanine as the active semiconductor layer. The compound was deposited as 70 nm thick spin-coated films onto gold source-drain electrodes supported on octadecyltrichlorosilane treated 250 nm thick SiO2 gate insulator. The analysis of experimental results showed the n-type field effect behaviour. Devices annealed at 100 oC under vacuum were found to exhibit the field-effect mobility of 0.0989 cm2 V-1 s-1, with an on/off current modulation ratio of ∼106, a reduced threshold voltage of 0.7 V and a sub-threshold swing of 2.12 V decade-1. The variations in surface morphology of the devices are found reflected considerably in the electrical measurements. The device contact resistance was found to be decreased as the gate bias increased and also with the annealing

    Channel Length Dependent Characterisations of Organic Thin Film Transistors with Solution Processable Gadolinium Phthalocyanine Derivatives

    Get PDF
    Spin-coated 52-nm-thick films of newly synthesised gadolinium liquid crystalline bisphthalocyanine sandwich (GdPc 2) complexes with octyl chains non-peripheral positions have been successfully employed as active layers for bottom-gate organic field effect transistors having both short (5μm) and long (20μm) channels. The scaling down of the channel length (L) decreases the field effect mobility due to the increase in the contact resistance between the gold electrodes and the GdPc 2 semiconducting layer. Values of on–off ratio and sub-threshold voltage swing are higher nearly one order of magnitude for L=5μm than those for L=20μm

    Formation of gold(III) alkyls from gold alkoxide complexes

    Get PDF
    The gold(III) methoxide complex (C^N^C)AuOMe 1 reacts with tris(p-tolyl)phosphine in benzene at room temperature under O-abstraction to give methylgold product (C^N^C)AuMe 2 together with O=P(p-tol)3 {(C^N^C) = [2,6-(C6H3tBu-4)2¬pyridine]2 }. Calculations show that this reaction is energetically favourable (ΔG = 32.3 kcal mol 1). The side-products in this reaction, the Au(II) complex [Au(C^N^C)]2 3 and the phosphorane (p-tol)3P(OMe)2, suggest that at least two reaction pathways may operate, including one involving (C^N^C)Au• radicals. Attempts to model the reaction by DFT methods showed that PPh3 can approach 1 to give a near-linear Au-O-P arrangement, without phosphine coordination to gold. The analogous reaction of (C^N^C)AuOEt, on the other hand, gives exclusively a mixture of 3 and (p-tol)3P(OEt)2. Whereas the reaction of (C^N^C)AuOR (R = But, p-C6H4F) with P(p-tol)3 proceeds over a period of hours, compounds with R = CH2CF3 or CH(CF3)2 react almost instantaneously, to give 3 and O=P(p-tol)3. In chlorinated solvents, treatment of the alkoxides (C^N^C)AuOR with phosphines generates [(C^N^C)Au(PR3)]Cl, via Cl-abstraction from the solvent. Attempts to extend the synthesis of gold(III) alkoxides to allyl alcohols were unsuccessful; the reaction of (C^N^C)AuOH with an excess of CH2=CHCH2OH in toluene led instead to allyl alcohol isomerization to give a mixture of gold alkyls, (C^N^C)AuR′ (R′ = -CH2CH2CHO 10 and CH2CH(CH2OH)¬OCH2¬CH=CH2 11), while 2-methallyl alcohol affords R′ = CH2CH(Me)CHO 12. The crystal structure of 11 was determined. The formation of Au-C instead of the expected Au-O products is in line with the trend in metal-ligand bond dissociation energies for Au(III), M-H > M-C > M-O

    Targeted photodynamic therapy of breast cancer cells using lactose-phthalocyanine functionalized gold nanoparticles

    Get PDF
    Gold nanoparticles (AuNPs), which have been widely used for the delivery of photosensitizers for photodynamic therapy (PDT) of cancer, can be dispersed in aqueous solutions, improving the delivery of the hydrophobic photosensitizer into the body. Furthermore, the large surface of AuNPs can be functionalized with a variety of ligands, including proteins, nucleic acids and carbohydrates, that allow selective targeting to cancer tissue. In this study, gold nanoparticles were functionalized with a mixed monolayer of a zinc phthalocyanine and a lactose derivative. For the first time, a carbohydrate was used with a dual purpose, as the stabilizing agent of the gold nanoparticles in aqueous solutions and as the targeting agent for breast cancer cells. The functionalization of the phthalocyanine-AuNPs with lactose led to the production of water-dispersible nanoparticles that are able to generate singlet oxygen and effect cell death upon irradiation. The targeting ability of lactose of the lactose-phthalocyanine functionalized AuNPs was studied in vitro towards the galectin-1 receptor on the surface of breast cancer cells. The targeting studies showed the exciting potential of lactose as a specific targeting agent for galactose-binding receptors overexpressed on breast cancer cells

    Steady state charge conduction through solution processed liquid crystalline lanthanide bisphthalocyanine films

    Get PDF
    In-plane electrical characteristics of non-peripherally octyl (C8H17) and hexyl (C6H13) substituted liquid crystalline (LC) double decker lanthanide bisphthalocyanine (LnPc2) complexes with central metal ions lutetium (Lu), and gadolinium (Gd) have been measured in thin film formulations on interdigitated gold (Au) electrodes for the applied voltage (V_a) range of 〖0 ≤ V〗_a ≤100 V. The conduction mechanism is found to be Ohmic within the bias of 〖0 ≤ V〗_a ≤30 V 0≤Va≤30 V while the bulk limited Poole-Frenkel mechanism is responsible for the higher bias. The compounds show individual characteristics depending on the central metal ions, substituent chain lengths and their mesophases. Values of 67.55 μS〖cm〗^(-1) and 42.31 μS〖cm〗^(-1) have been obtained. for room temperature in-plane Ohmic conductivity of as-deposited octyl lutetium (C8LuPc2) and hexyl gadolinium (C6GdPc2) films, respectively while C8GdPc2 films exhibit nearly two orders of magnitude smaller conductivity. On annealing at 80 ̊C, Ohmic conductivities of C8LuPc2 and C8GdPc2 are found to have increased but the conductivity of C6GdPc2 decreases by more than one order of magnitude to 1.5 μS〖cm〗^(-1). For physical interpretation of the charge transport behavior of these three molecules, their UV-visible optical absorption spectra have been studied in the solution and in as-deposited and annealed solid phases. It is believed that both orientational and positional reorganisations are responsible depending upon the size of the central ion and side chain length

    Compact modeling of organic thin film transistors with solution processed octadecyl substituted tetrabenzotriazaporphyrin as an active layer

    Get PDF
    Using 70nm thick spin-coated film of newly synthesized octadecyl substituted copper tetrabenzotriazaporphyrin (10CuTBTAP) as an active layer on a highly doped silicon (110) gate electrode substrates, output characteristics and transfer characteristics of bottom-gate bottom-contact organic thin film transistors have been measured at room temperature. A compact model for thin film transistors has been employed as a part of circuit design tool to extract device parameters such as the charge carrier mobility μ, the threshold voltage VT and the contact resistances. Parallel measurements and analysis were performed on similarly constructed devices with a copper phthalocyanine analogue (10CuPc). The results reveal that the 10CuPc layer is relatively more susceptible to trapping degradation near the gate region than a 10CuTBTAP layer, which is significant in order to achieve stability in these transistors. The application of the simple square law in the classical MOS model provides a quicker but approximate interpretation of the transistor performance without providing information on the gate voltage dependence of mobility and the effects of the contact regions. In this comparative study, the analysis of the contact regions is found to be very important for determining the difference in the performance of two transistors
    corecore