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Abstract 

A homologous series of fourteen metal-free 1,4,8,11,15,18-hexakis(alkyl)-22-methyl-25-

hydroxyalkylphthalocyanine derivatives has been investigated to interogate the interlay of the roles 

of the six alkyl chains and the length of the hydroxyalkyl chain in promoting thermotropic nematic 

liquid crystalline behavior. All but two of the compounds form mesophases. Eight of the remaining 

compounds exhibit only columnar mesophases which is common among liquid crystalline 

phthalocyanines. However, four examples form the rare discotic nematic mesophase. A general 

structural feature is deduced in that this rare phase is favoured when the number of linking atoms in 

the hydroxyalkyl chain exceeds twice the number of carbon atoms in any one of the six common 

alkyl chains, disrupting the columnar packing arrangement. In addition, zinc and copper metallated 

examples of one of the metal-free discotic nematic compounds were prepared of which the zinc 

metallated compound formed a nematic phase whereas the copper containing analogue favoured 

columnar mesophase formation.  

 

Keywords: Liquid Crystalline Phthalocyanines, Columnar Mesophase, Nematic Discotic 

Mesophase 

 

1. Introduction 

Phthalocyanines (Pcs) are highly stable man-made macrocycles. They are typically blue-green in 

colour and for many decades have been used as commercial dyes and pigments. The relative ease of 

incorporating substituents onto the macrocyclic ring and introducing a metal ion or metalloid 

element into the core of the macrocyclic ligand allows tuning of the properties of the system, not 

simply the colour but a range of interesting photophysical and semi-conducting properties. They are 

thus important in the area of organic materials development, building on their successfully 

established applications as charge carriers in photocopiers,1 as dyes in laser/LED printing2 and as 

laser light absorbers for optical data storage in certain CD-ROMs.3 Other Pcs show promise for 

exploitation in organic based solar cells4 and their photoexcited state properties, tunable by structure 



variation, has provided materials suitable for optical limiting5 and, in health care, as singlet oxygen 

photosensitizers for photodynamic therapy of particular cancers.6 In a developing area, a number of 

Pcs that exhibit liquid crystal properties show enhanced semiconducting behaviour in the 

temperature range where the liquid crystal state (mesophase) occurs.7-10  

Simon et al. discovered the first liquid crystalline Pcs in 1982,11 so adding new examples to the 

then recently identified class of so-called ‘discotic’ liquid crystals.  Discotic liquid crystals typically 

possess near planar (often aromatic) cores and bear a number of paraffinic chains. Simon’s Pcs 

carried eight alkoxymethyl chains at the peripheral (2,3,9,10,16,17,23,24-) sites of the Pc ring.11-14 

The UEA group then reported new examples bearing eight medium length alkyl15-18 or 

alkoxymethyl groups19,20 located at the alternative non-peripheral (1,4,8,11,15,18,22,25-) positions 

of the macrocycle, substitution type A in Fig 1. The group then extended the range of liquid 

crystalline Pcs to include non-uniformly substituted compounds such as those depicted as type B in 

Fig 1.21-25 All the liquid crystalline examples referred to above exhibit columnar mesophase 

behaviour, see Fig 2, and is discussed later. Our recent preliminary study26 probed how a 

combination of particular ring substituents on the Pc core of type C metal-free compounds also 

promotes mesophase formation. R groups were pentyl and the hydroxyalkyl group chainlength was 

varied from n = 9 to 12. Pentyl groups were chosen in light of an earlier study that showed that eight 

pentyl groups alone in the type A structure were insufficient to promote mesophase generation.15,16 

It was found that type C compounds with six pentyl groups, a methyl group and a long hydroxyalkyl 

chain exhibited not merely liquid crystallinity but either columnar or the rare nematic mesophase 

(see Fig. 2) depending upon the length of the hydroxyalkyl chain. The present paper reports a 

comprehensive study into how mesophase type is indeed subtlely, but somewhat predictably, 

dependent upon particular substituent combinations within type C structures and also extends the 

investigation to two examples of metallated Pc derivatives. 

 

 

                  



Fig. 1.  Examples of series of substituted phthalocyanines, R = alkyl, as metal-free derivatives, that  exhibit liquid 

crystal behavior. 

 

   

                                  

 

Fig. 2.  Molecular arrangements in the (discotic) columnar mesophase and nematic mesophase ND. 

2. Results and Discusion 

2.1 Preparation of compounds 
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Scheme 1. Syntheses of type C compounds and summary of their liquid crystal behaviour on cooling. i n-

Bromoalkyloxytetrahydropyran.  ii Fumaronitrile then LiN(Me3Si)2  iii LiOH/pentanol/reflux then acetic acid workup. iv 

Reflux in ethanol with a copper or zinc acetate. (transition in parentheses is monotropic – the nematic mesophase is only 

observed on cooling; X = undefined glassy phase formed alongside partial crystallisation). 

 

The present series of type C phthalocyanine derivatives investigated for liquid crystal behaviour 

was prepared according to the route shown in Scheme 1. The synthetic method was developed 

earlier by us to provide examples of homologues designed for other studies.22-25 In the present work, 



the mixed cyclisation of two phthalonitrile derivatives, i.e. a 3-methyl-6-(hydroxyalkyl) 

phthalonitrile and a 3,6-dialkylphthalonitrile, step iii in Scheme 1, produced the desired metal-free 

phthalocyanine compound. The principal side-product was the symmetrically substituted 

1,4,8,11,15,18,22,25-octakis(alkyl)phthalocyanine; limited amounts of further unwanted cross-

condensation products were also formed. In addition to fourteen type C metal-free derivatives, a 

zinc and a copper metalated example were also prepared by reacting metal-free derivative 5 with 

zinc acetate and copper acetate respectively. Yields and characterisation data for novel compounds 

are collected in the Experimental section.  

 

2.2 Mesophase behaviour 

Typically, discotic liquid crystalline compounds exhibit the so-called columnar mesophase structure 

and, beyond phthalocyanines, much research has focussed in particular on triphenylenes and 

hexabenzocoronenes bearing flexible substituent chains. As the term implies, columnar mesophase 

formation involves a stacking of the cores of the molecules, providing a degree of order, with the 

stacks separated by the substituent chains. Thus, as temperature is raised above the melting point of 

the crystalline material, stacking is largely maintained while the mobility of the chains increases 

leading to disorder between the stacks. In short, the molecules display a positional short range order 

and an orientational long range order. An alternative packing arises in the much less common 

discotic nematic mesophase denoted as ND.27,28 Here the columnar stacking is destabilised leading 

to translational and rotational freedom of the molecules about the axis perpendicular to the plane of 

the core. However, the cores remain broadly aligned parallel to each other, see Fig 2. Among liquid 

crystalline phthalocyanines there have been no definitive reports of nematic mesophase formation 

prior to the present research program.26  

 

Fig 3. Polarising optical microscopic textures for Columnar hexagonal (left) and nematic (right) 

mesophases.  

 

Mesophase behaviour of the Pc derivatives has been investigated using polarising optical 

microscopy (POM) and differential scanning calorimetry (DSC), and the results are summarized 



within Scheme 1. POM in particular provides a reliable and simple method for identifying the 

discotic mesophases and two representative images from the present work are shown in Fig 3 for the 

columnar hexagonal phase and the discotic nematic phase (Schlieren texture). The nematic 

mesophase is further characterized by its low viscosity compared to its columnar counterpart. The 

table within Scheme 1 illustrates how structural features of the Pcs, i.e. chain length of the six alkyl 

chains (R in structure C) and the length of the hydroxyalkyl chain, govern mesophase formation and 

the type of mesophase that is generated.  Thus two examples bearing six butyl groups are non-liquid 

crystalline indicating that chains longer than these are essential for liquid crystallinity within the 

series. The liquid crystalline Pcs fall into two categories. On cooling from the isotropic liquid the 

majority follow the normal trend for Pcs in that they form columnar mesophases. Columnar 

hexagonal, Colh, are solely formed for all such metal-free derivatives. Characteristic textures are 

formed (Fig 3) that persist until a second transition occurs at lower temperatures. In some samples 

crystallization is clear, while others form a glassy phase where the viscosity of the system leads to 

partial crystallization and glass formation (denoted as X).  The second category comprises a smaller 

subset of derivatives that display nematic mesophase behaviour on cooling. Again the nature of this 

low-viscosity phase is easily identified from POM.  To the best of our knowledge this set of 

derivatives are the only Pcs known to form nematic phases and it is clear that the structural features 

leading to their formation are subtle and balanced. The hydrophilic end group of the hydroxyalkyl 

substituent is important for promoting formation of the nematic mesophase within this series of 

compounds. A related derivative where a C12H25 group replaces the (CH2)11OH chain of compound 

6 forms exclusively columnar mesophases.26 Thus the presence of the terminal hydroxyl group is 

essential for promoting the nematic mesophase but it is only observed in a select subset of 

examples. Evidently, the relative lengths of the R chains and the hydroxyalkyl chain play a role in 

governing the type of mesophase that is formed.  In those Pcs where the core-core separation in the 

columnar (Col) arrangement (ca. 2 x length of the R chains) is as long as, or longer than, the 

hydroxyalkyl chain, then the latter can be accommodated within the columnar assembly and may 

even allow for the OH group in a fully extended chain to hydrogen bond to the aza-bridge of a Pc 

molecule in an adjacent column. However, lengthening the link to the hydroxyl group disturbs this 

arrangement, potentially forcing a buckling of the chain or forcing the hydroxyl group into the 

hydrophobic interstitial region of the columnar stack. In such a situation the columnar arrangement 

will no longer favoured and formation of a nematic mesophase can be rationalised.  Data for the 

copper and zinc metallated compounds, 15 and 16 respectively, are also instructive. The zinc centre 

in 16 provides a further option for interation with the OH function and is found to raise both the Cr 

– ND and ND – I transition temperatures relative to the metal-free analogue 5.  Copper at the centre 

of the core of the Pc is more interesting. It is known to stabilise very significantly columnar 



mesophase assemblies of octaalkyl substituted Pcs, i.e extend the mesophase temperature range, 

through what are presumed to be interactions with the ring nitrogen atoms. Thus, unlike compounds 

5 and 16, the copper metallated analogue 15 forms exclusively columnar mesophases.  

  

3. Conclusion 

The study has demonstrated how a particular set of substituents on the phthalocyanine nucleus 

can promote formation of the rare discotic nematic mesophase ND. Mesophase behaviour is induced 

by introduction of a relatively long hydroxyalkyl substituent at one of the non-peripheral sites along 

with six shorter alkyl chains and a methyl group at the remaining seven non-peripheral positions. 

Most examples of the fourteen metal-free phthalocyanine derivatives exhibit the more familiar 

columnar mesophases. However, it has been demonstrated that the nematic mesophase is formed 

when the hydroxyalkyl chain is longer than the natural separation between cores in the columnar 

arrangement, a separation that is governed by the length of the six common alkyl chains. Two 

metallated derivatives of a metal-free derivative that exhibits the ND mesophase have also been 

investigated. The zinc metallated analogue provides a further example of a nematic discotic liquid 

crystal. However, the corresponding copper metallated derivative forms exclusively columnar 

mesophases. Factors such as molecular packing and local interactions drive self-assembly in 

discotic systems and it is apparent that subtle balance within narrow parameters is required to 

favour nematic assembly over the more frequently encountered columnar mesophase formation.  

 

4. Experimental  

4.1 General Equipment 

Melting points were recorded using an Olympus BH-2 polarising microscope in conjunction with a 

Linkham TMS 92 thermal analyser with a Linkham THM 600 cell, and were not corrected. Infra-red 

spectra were recorded on a Perkin-Elmer 597 spectrophotometer. UV-visible spectra were measured 

using a Hitachi U-3000 spectrophotometer fitted with a red sensitive detector. NMR spectra were 

recorded on a Jeol EX-270 spectrometer (270 MHz). Routine mass spectra were obtained using a 

Kratos MS 25 mass spectrometer. MALDI-MS were obtained using 2,5-dihydroxybenzoic acid as a 

matrix and measured on a Kratos KOMPACT MALDI III spectrometer. 

4.2 Synthesis 

The synthesis of 3,6-bis(alkyl)phthalonitriles has been described elsewhere.17,29  

The synthesis of unsymmetrically substituted phthalocyanines 3-6 has been recently 

communicated26 and further 1,4,8,11,15,18-hexakis(alkyl)-22-methyl-25-(n-hydroxyalkyl) 



phthalocyanines were similarly obtained. In a typical procedure, the individual 3-methyl-6-

hydroxyalkylphthalonitriles above (1 mmol) were separately reacted with 3,6-

bis(alkyl)phthalonitrile, (9 mmol) in a solution of 1-pentanol (25 ml) heated under reflux to which 

was slowly added lithium metal (0.30 g, 9 mmol). The reaction mixture was heated under reflux for 

18 h and protected from atmospheric moisture by a CaCl2 drying tube.  The reaction was cooled to 

rt and glacial acetic acid added. The solution was stirred for 30 min.  The solvents were removed by 

distillation under reduced pressure and the product chromatographed twice over silica. The first 

partial separation was achieved by elution first with petrol and then THF. The green components 

were then collected and chromatographed again (eluent cyclohexane, followed by cyclohexane/THF 

2:1 by volume) which achieved separation of the 1,4,8,11,15,18-hexakis(alkyl)-22-methyl-25-

(hydroxyalkyl)phthalocyanine from 1,4,8,11,15,18,22,25-octakis(alkyl) phthalocyanine and other 

minor products. 1H NMR spectra were concentration and temperature dependent due to aggregation 

which also prevented acquisition of useful 13C NMR data. The protocol provided the following 

derivatives: 

 

 

1,4,8,11,15,18-Hexakis(butyl)-22-methyl-25-(11-hydroxyundecyl)phthalocyanine (1) 

[Yield 38%. Found C, 78.84; H, 8.68; N, 10.58%. C68H90N8O requires: C, 78.87; H, 8.76; N, 

10.82%. IR (cm-1) 760, 1024, 2854, 2924, 3293. 1H NMR (270 MHz, C6D6, 2.0 mM, 23°C): δ, ppm 

-0.58 (2H, s), 0.96–2.32 (60H, m), 3.26 (2H, t, J 6Hz), 3.63 (3H, s), 4.35 (2H, t, J 8Hz), 4.49-4.69 

(12H, m), 7.53 (1H, d), 7.64–7.73 (3H, m), 7.81 (4H, s). UV-vis (cyclohexane): λ, nm (log ε) 727 

(5.1), 691 (5.02), 663 (4.6), 629 (4.41), 358 (4.72), 310 (4.61)]. 

 

1,4,8,11,15,18-Hexakis(butyl)-22-methyl-25-(12-hydroxydodecyl)phthalocyanine (2) 

[Yield 11%. Found C, 79.01; H, 8.94; N, 10.40%. C69H92N8O requires: C, 78.96; H, 8.84; N, 

10.68%. IR (cm-1) 760, 1024, 2852, 2924, 3293. 1H NMR (270 MHz, C6D6, 2.0 mM, 23°C): δ, ppm 

-0.59 (2H, s), 0.96–1.79 (48H, m), 2.06-2.32 (14H, m), 3.26-3.30 (2H, m), 3.55 (1H, s), 3.63 (3H, 

s), 4.34 (2H, t, J 7Hz), 4.49-4.69 (12H, m), 7.52 (1H, d), 7.64–7.73 (3H, m), 7.82 (4H, s). UV-vis 

(cyclohexane): λ, nm (log ε) 727 (5.08), 691 (5.0), 664 (4.57), 629 (4.38), 356 (4.69), 310 (4.59)]. 

 

1,4,8,11,15,18-Hexakis(hexyl)-22-methyl-25-(10-hydroxydecyl)phthalocyanine (7) 

[Yield 30%. Found C, 79.86; H, 9.61; N, 9.24%. C79H112N8O requires: C, 79.75; H, 9.49; N, 9.42%. 

IR (cm-1) 760, 1022, 2855, 2924, 3297. 1H NMR (270 MHz, C6D6, 2.0 mM, 23°C): δ, ppm -0.69 

(2H, s), 0.83–0.95 (18H, m), 1.11-1.83 (50H, m), 2.06-2.36 (14H, m), 3.23-3.29 (2H, m), 3.60 (3H, 



s), 4.27 (2H, t, J 8Hz), 4.49-4.72 (12H, m), 7.51 (1H, d), 7.62–7.71 (3H, m), 7.84 (4H, s). UV-vis 

(cyclohexane): λ, nm (log ε) 728 (5.11), 692 (5.03), 664 (sh), 629 (4.43), 357 (4.73), 310 (4.63)]. 

 

1,4,8,11,15,18-Hexakis(hexyl)-22-methyl-25-(11-hydroxyundecyl)phthalocyanine (8) 

[Yield 17%. Found C, 79.81; H, 9.52; N, 9.12%. C80H114N8O requires: C, 79.82; H, 9.54; N, 9.31%. 

IR (cm-1) 760, 1020, 2853, 2924, 3295. 1H NMR (270 MHz, C6D6, 2.0 mM, 23°C): δ, ppm -0.79 

(2H, s), 0.84–0.95 (18H, m), 1.14-1.81 (52H, m), 2.03-2.35 (14H, m), 3.25-3.30 (2H, m), 3.52 (3H, 

s), 4.18 (2H, t, J 7Hz), 4.42-4.70 (12H, m), 7.44 (1H, d), 7.57–7.67 (3H, m), 7.83-7.84 (4H, m). 

UV-vis (cyclohexane): λ, nm (log ε) 728 (5.11), 692 (5.03), 664 (4.6), 629 (4.41), 356 (4.72), 310 

(4.61). m/z 1204 [M+]]. 

 

1,4,8,11,15,18-Hexakis(hexyl)-22-methyl-25-(12-hydroxydodecyl)phthalocyanine (9) 

[Yield 44%. Found C, 79.84; H, 9.57; N, 8.91%. C81H116N8O requires: C, 79.88; H, 9.60; N, 9.20%. 

IR (cm-1) 760, 1020, 2853, 2924, 3297. 1H NMR (270 MHz, C6D6, 2.0 mM, 23°C): δ, ppm -0.68 

(2H, s), 0.83–0.94 (18H, m), 1.12-1.83 (54H, m), 2.06-2.36 (14H, m), 3.25-3.30 (2H, m), 3.61 (3H, 

s), 4.27 (2H, t, J 7Hz), 4.49-4.72 (12H, m), 7.50 (1H, d), 7.62–7.69 (3H, m), 7.85 (4H, s). UV-vis 

(cyclohexane): λ, nm (log ε) 728 (5.09), 691 (5.01), 665 (4.6), 629 (4.41), 356 (4.71), 310 (4.60)]. 

 

1,4,8,11,15,18-Hexakis(heptyl)-22-methyl-25-(10-hydroxydecyl)phthalocyanine (10) 

[Yield 6%. Found C, 79.80; H, 9.86; N, 8.50%. C85H124N8O requires: C, 80.14; H, 9.81; N, 8.80%. 

IR (cm-1) 760, 1022, 2853, 2924, 3297. 1H NMR (270 MHz, C6D6, 2.0 mM, 23°C): δ, ppm -0.58 

(2H, s), 0.8–0.9 (18H, m), 1.13-1.78 (62H, m), 2.22-2.35 (14H, m), 3.26 (2H, t, J 6Hz), 3.68 (3H, 

s), 4.32-4.39 (2H, m), 4.56-4.73 (12H, m), 7.57 (1H, d), 7.67–7.74 (3H, m), 7.86 (4H, s). UV-vis 

(cyclohexane): λ, nm (log ε) 728 (5.09), 692 (5.01), 665 (4.58), 629 (4.4), 357 (4.71), 310 (4.60)]. 

 

1,4,8,11,15,18-Hexakis(heptyl)-22-methyl-25-(11-hydroxyundecyl)phthalocyanine (11) 

[Yield 12%. Found C, 80.24; H, 9.86; N, 8.45%. C86H126N8O requires: C, 80.20; H, 9.86; N, 8.70%. 

IR (cm-1) 760, 1020, 2853, 2924, 3297. 1H NMR (270 MHz, C6D6, 2.0 mM, 23°C): δ, ppm -0.71 

(2H, s), 0.81–0.95 (18H, m), 1.15-1.80 (64H, m), 2.08-2.32 (14H, m), 3.28 (2H, t, J 7Hz), 3.60 (3H, 

s), 4.23-4.27 (2H, m), 4.48-4.73 (12H, m), 7.50 (1H, d), 7.62–7.71 (3H, m), 7.85 (4H, s). UV-vis 

(cyclohexane): λ, nm (log ε) 728 (5.09), 692 (5.01), 664 (4.59), 629 (4.41), 358 (4.71), 310 (4.61)]. 

 

1,4,8,11,15,18-Hexakis(heptyl)-22-methyl-25-(12-hydroxydodecyl)phthalocyanine (12) 



[Yield 21%. Found C, 80.14; H, 9.86; N, 8.39%. C87H128N8O requires: C, 80.26; H, 9.91; N, 8.61%. 

IR (cm-1) 760, 1020, 2853, 2922, 3297. 1H NMR (270 MHz, C6D6, 2.0 mM, 23°C): δ, ppm -0.71 

(2H, s), 0.81–0.95 (18H, m), 1.14-1.83 (66H, m), 2.09-2.36 (14H, m), 3.29 (2H, t, J 6Hz), 3.54-3.60 

(4H, m), 4.23-4.28 (2H, m), 4.47-4.72 (12H, m), 7.50 (1H, d), 7.62–7.68 (3H, m), 7.85 (4H, s). UV-

vis (cyclohexane): λ, nm (log ε) 728 (5.11), 692 (5.03), 665 (4.61), 629 (4.43), 357 (4.73), 310 

(4.62)]. 

 

1,4,8,11,15,18-Hexakis(octyl)-22-methyl-25-(11-hydroxyundecyl)phthalocyanine (13) 

[Yield 24%. Found C, 80.30; H, 10.23; N, 8.02%. C92H138N8O requires: C, 80.53; H, 10.14; N, 

8.17%. IR (cm-1) 760, 1022, 2853, 2922, 3297. 1H NMR (270 MHz, C6D6, 2.0 mM, 23°C): δ, ppm -

0.70 (2H, s), 0.83–0.93 (18H, m), 1.13-1.84 (76H, m), 2.09-2.37 (14H, m), 3.28 (2H, t, J 6Hz), 3.60 

(3H, s), 4.24-4.26 (2H, m), 4.48-4.73 (12H, m), 7.50 (1H, d), 7.63–7.69 (3H, m), 7.86 (4H, s). UV-

vis (cyclohexane): λ, nm (log ε) 728 (5.08), 692 (5.0), 664 (sh), 629 (4.41), 357 (4.71), 310 (4.61)]. 

 

 

1,4,8,11,15,18-Hexakis(octyl)-22-methyl-25-(12-hydroxydodecyl)phthalocyanine (14) 

[Yield 26%. Found C, 80.56; H, 10.01; N, 7.84%. C93H140N8O requires: C, 80.58; H, 10.18; N, 

8.08%. IR (cm-1) 760, 1020, 2853, 2922, 3297. 1H NMR (270 MHz, C6D6, 2.0 mM, 23°C): δ, ppm -

0.70 (2H, s), 0.80–0.93 (18H, m), 1.14-1.83 (78H, m), 2.10-2.36 (14H, m), 3.29 (2H, t, J 6Hz), 3.60 

(3H, s), 4.22-4.28 (2H, m), 4.51-4.73 (12H, m), 7.51 (1H, d), 7.62–7.72 (3H, m), 7.86 (4H, s). UV-

vis (cyclohexane): λ, nm (log ε) 728 (5.08), 692 (5.0), 664 (4.58), 628 (4.40), 357 (4.71), 310 

(4.61)]. 

 

1,4,8,11,15,18-Hexakis(pentyl)-22-methyl-25-(11-hydroxyundecyl)phthalocyaninato copper (15) 

[Yield 30%. Found C, 75.07; H, 8.65; N, 9.26%. C74H100N8OCu requires: C, 75.25; H, 8.53; N, 

9.49%. IR (cm-1) 1091, 1175, 1325, 2855, 2924. UV-vis (cyclohexane): λ, nm (log ε) 704 (5.16), 

671 (sh), 636 (4.66), 344 (4.74), 309 (4.61). m/z 1181 [M+]]. 

 

1,4,8,11,15,18-Hexakis(pentyl)-22-methyl-25-(11-hydroxyundecyl)phthalocyaninato zinc (16) 

[Yield 57%. Found C, 75.17; H, 8.63; N, 9.27%. C74H100N8OZn requires: C, 75.13; H, 8.52; N, 

9.47%. IR (cm-1) 1094, 1167, 1323, 2855, 2924. 1H NMR (270 MHz, C6D6, 2.0 mM, 23°C): δ, ppm 

-2.28 (1H, s), -0.58--0.45 (2H, m), -0.3--0.18 (2H, m), 0.65-1.85 (56H, m), 2.15-2.50 (14H, m), 3.74 

(3H, s), 4.42 (2H, m), 4.52-4.89 (12H, m), 7.51 (1H, d), 7.61–7.72 (3H, m), 7.88-7.95 (4H, m). UV-

vis (cyclohexane): λ, nm (log ε) 699 (5.22), 669 (4.43), 630 (4.45), 344 (4.62), 309 (4.52). m/z 1183 

[M+]]. 
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