22 research outputs found
Conducting polymer materials for bioelectronics applications
141 p.Esta tesis doctoral tiene como objetivo la síntesis de nuevos materiales poliméricos blandos y conductividad iónica y electrónica. Estos materiales han de suponer una mejora en ciertas aplicaciones bioelectrónicas y ser la interface entre la electrónica y la biología. Con el trabajo de esta tesis, han sido creados los siguientes materiales: Con el uso de un nuevo reticulante de Poli(3,4-etilendioxitiofeno)-poli(estireno sulfonato) (PEDOT:PSS) llamado divinilsulfona (DVS), hemos fabricado electrodos de PEDOT:PSS como films y también sobre tejidos al hacerlos conductores. Estos electrodos han sido usados para medir la actividad cardiaca en electrocardiografía. Un nuevo hidrogel que contiene Na+ ha sido creado como electrolito gel para el uso de dispositivos bioelectrónicos. Por último, nuevas dispersiones de PEDOT con polisacáridos han sido sintetizadas y posteriormente combinadas con líquidos iónicos para la fabricación de geles iónicos con alta conductividad electrónica e iónica, y flexibilidad. Con estas dispersiones también se han creado scaffolds porosos para el cultivo de células in vitro y su posterior monitorización gracias a sus propiedades conductoras. Los scaffolds son blandos, tienen paredes rugosas y poros interconectados, propiedades muy apropiadas para el cultivo de células.Polymat
BEL Lab. École des Mines de Saint Etienn
Conducting polymer materials for bioelectronics applications
141 p.Esta tesis doctoral tiene como objetivo la síntesis de nuevos materiales poliméricos blandos y conductividad iónica y electrónica. Estos materiales han de suponer una mejora en ciertas aplicaciones bioelectrónicas y ser la interface entre la electrónica y la biología. Con el trabajo de esta tesis, han sido creados los siguientes materiales: Con el uso de un nuevo reticulante de Poli(3,4-etilendioxitiofeno)-poli(estireno sulfonato) (PEDOT:PSS) llamado divinilsulfona (DVS), hemos fabricado electrodos de PEDOT:PSS como films y también sobre tejidos al hacerlos conductores. Estos electrodos han sido usados para medir la actividad cardiaca en electrocardiografía. Un nuevo hidrogel que contiene Na+ ha sido creado como electrolito gel para el uso de dispositivos bioelectrónicos. Por último, nuevas dispersiones de PEDOT con polisacáridos han sido sintetizadas y posteriormente combinadas con líquidos iónicos para la fabricación de geles iónicos con alta conductividad electrónica e iónica, y flexibilidad. Con estas dispersiones también se han creado scaffolds porosos para el cultivo de células in vitro y su posterior monitorización gracias a sus propiedades conductoras. Los scaffolds son blandos, tienen paredes rugosas y poros interconectados, propiedades muy apropiadas para el cultivo de células.Polymat
BEL Lab. École des Mines de Saint Etienn
Poly(3,4-ethylenedioxythiophene) (PEDOT) Derivatives: Innovative Conductive Polymers for Bioelectronics
Poly(3,4-ethylenedioxythiophene)s are the conducting polymers (CP) with the biggest prospects in the field of bioelectronics due to their combination of characteristics (conductivity, stability, transparency and biocompatibility). The gold standard material is the commercially available poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS). However, in order to well connect the two fields of biology and electronics, PEDOT: PSS presents some limitations associated with its low (bio) functionality. In this review, we provide an insight into the synthesis and applications of innovative poly(ethylenedioxythiophene)-type materials for bioelectronics. First, we present a detailed analysis of the different synthetic routes to (bio) functional dioxythiophene monomer/polymer derivatives. Second, we focus on the preparation of PEDOT dispersions using different biopolymers and biomolecules as dopants and stabilizers. To finish, we review the applications of innovative PEDOT-type materials such as biocompatible conducting polymer layers, conducting hydrogels, biosensors, selective detachment of cells, scaffolds for tissue engineering, electrodes for electrophysiology, implantable electrodes, stimulation of neuronal cells or pan-bio electronics.The work was supported by EU through the projects FP7-PEOPLE-2012-ITN 316832-OLIMPIA and FP7-PEOPLE-2013-ITN 607896-OrgBio. Ana Sanchez-Sanchez is thankful for the Postdoctoral Funding for Doctoral Research Staff Improvement Grant from the Basque Government. David Mecerreyes thanks Becas de Practicas en el Extranjero "Global Training"
Digital Light 3D Printing of PEDOT-Based Photopolymerizable Inks for Biosensing
3D conductive materials such as polymers and hydrogels that interface between biology and electronics are actively being researched for the fabrication of bioelectronic devices. In this work, short-time (5 s) photopolymerizable conductive inks based on poly(3,4-ethylenedioxythiophene) (PEDOT):polystyrene sulfonate (PSS) dispersed in an aqueous matrix formed by a vinyl resin, poly(ethylene glycol) diacrylate (PEGDA) with different molecular weights (M-n = 250, 575, and 700 Da), ethylene glycol (EG), and a photoinitiator have been optimized. These inks can be processed by Digital Light 3D Printing (DLP) leading to flexible and shape-defined conductive hydrogels and dry conductive PEDOTs, whose printability resolution increases with PEGDA molecular weight. Besides, the printed conductive PEDOT-based hydrogels are able to swell in water, exhibiting soft mechanical properties (Young's modulus of similar to 3 MPa) similar to those of skin tissues and good conductivity values (10(-2) S cm(-1)) for biosensing. Finally, the printed conductive hydrogels were tested as bioelectrodes for human electrocardiography (ECG) and electromyography (EMG) recordings, showing a long-term activity, up to 2 weeks, and enhanced detection signals compared to commercial Ag/AgCl medical electrodes for health monitoring.This work was supported by Marie Sklodowska-Curie Research
and Innovation Staff Exchanges (RISE) under grant agreement
No. 823989 “IONBIKE”
Electrophoretic drug delivery for seizure control.
The persistence of intractable neurological disorders necessitates novel therapeutic solutions. We demonstrate the utility of direct in situ electrophoretic drug delivery to treat neurological disorders. We present a neural probe incorporating a microfluidic ion pump (μFIP) for on-demand drug delivery and electrodes for recording local neural activity. The μFIP works by electrophoretically pumping ions across an ion exchange membrane and thereby delivers only the drug of interest and not the solvent. This "dry" delivery enables precise drug release into the brain region with negligible local pressure increase. The therapeutic potential of the μFIP probe is tested in a rodent model of epilepsy. The μFIP probe can detect pathological activity and then intervene to stop seizures by delivering inhibitory neurotransmitters directly to the seizure source. We anticipate that further tailored engineering of the μFIP platform will enable additional applications in neural interfacing and the treatment of neurological disorders
Recommended from our members
Conducting Polymer Scaffolds Based on Poly(3,4-ethylenedioxythiophene) and Xanthan Gum for Live-Cell Monitoring.
Conducting polymer scaffolds can promote cell growth by electrical stimulation, which is advantageous for some specific type of cells such as neurons, muscle, or cardiac cells. As an additional feature, the measure of their impedance has been demonstrated as a tool to monitor cell growth within the scaffold. In this work, we present innovative conducting polymer porous scaffolds based on poly(3,4-ethylenedioxythiophene) (PEDOT):xanthan gum instead of the well-known PEDOT:polystyrene sulfonate scaffolds. These novel scaffolds combine the conductivity of PEDOT and the mechanical support and biocompatibility provided by a polysaccharide, xanthan gum. For this purpose, first, the oxidative chemical polymerization of 3,4-ethylenedioxythiophene was carried out in the presence of polysaccharides leading to stable PEDOT:xanthan gum aqueous dispersions. Then, by a simple freeze-drying process, porous scaffolds were prepared from these dispersions. Our results indicated that the porosity of the scaffolds and mechanical properties are tuned by the solid content and formulation of the initial PEDOT:polysaccharide dispersion. Scaffolds showed interconnected pore structure with tunable sizes ranging between 10 and 150 μm and Young's moduli between 10 and 45 kPa. These scaffolds successfully support three-dimensional cell cultures of MDCK II eGFP and MDCK II LifeAct epithelial cells, achieving good cell attachment with very high degree of pore coverage. Interestingly, by measuring the impedance of the synthesized PEDOT scaffolds, the growth of the cells could be monitored
Mixed Ionic and Electronic Conducting Eutectogels for 3D-Printable Wearable Sensors and Bioelectrodes
Eutectogels are a new class of soft ion conductive materials that are attracting attention as an alternative to conventional hydrogels and costly ionic liquid gels to build wearable sensors and bioelectrodes. Herein, the first example of mixed ionic and electronic conductive eutectogels showing high adhesion, flexibility, nonvolatility, and reversible low-temperature gel transition for 3D printing manufacturing is reporting. The eutectogels consist of choline chloride/glycerol deep eutectic solvent, poly(3,4-ethylenedioxythiophene): lignin sulfonate, and gelatin as the biocompatible polymer matrix. These soft materials are flexible and stretchable, show high ionic and electronic conductivities of 7.3 and 8.7 mS cm−1, respectively, and have high adhesion energy. Due to this unique combination of properties, they could be applied as strain sensors to precisely detect physical movements. Furthermore, these soft mixed ionic electronic conductors possess excellent capacity as conformal electrodes to record epidermal physiological signals, such as electrocardiograms and electromyograms, over a long time.M.L.P. and A.G. contributed equally to this work. This work was supported by Marie Sklodowska-Curie Research and Innovation Staff Exchanges (RISE) under the grant agreement No 823989 “IONBIKE.” The financial support received from CONICET and ANPCyT (Argentina) is also gratefully acknowledged. Thanks to the Flexible Electronic Department (FEL) of Ecole des Mines de Saint-Etienne (EMSE) for the combined mechanical/electrical characterization
Epithelial-myoepithelial tumour of the lung: a case report referring to its molecular histogenesis
Tracheobronchial submucous glands can be considered the pulmonary equivalent of minor salivary glands and therefore they can develop most of the tumours originated in these. Nevertheless, in spite of the wide distribution of this kind of glands along the tracheobronchial tree, pulmonary salivary gland-like neoplasms are not very frequent. Among them, the most frequent are mucoepidermoid and adenoid cystic carcinomas. On the contrary, pulmonary neoplasms showing a mixture of epithelial and myoepithelial elements are extraordinary infrequent, with only 11 cases collected from literature
Effectiveness of an intervention for improving drug prescription in primary care patients with multimorbidity and polypharmacy:Study protocol of a cluster randomized clinical trial (Multi-PAP project)
This study was funded by the Fondo de Investigaciones Sanitarias ISCIII (Grant Numbers PI15/00276, PI15/00572, PI15/00996), REDISSEC (Project Numbers RD12/0001/0012, RD16/0001/0005), and the European Regional Development Fund ("A way to build Europe").Background: Multimorbidity is associated with negative effects both on people's health and on healthcare systems. A key problem linked to multimorbidity is polypharmacy, which in turn is associated with increased risk of partly preventable adverse effects, including mortality. The Ariadne principles describe a model of care based on a thorough assessment of diseases, treatments (and potential interactions), clinical status, context and preferences of patients with multimorbidity, with the aim of prioritizing and sharing realistic treatment goals that guide an individualized management. The aim of this study is to evaluate the effectiveness of a complex intervention that implements the Ariadne principles in a population of young-old patients with multimorbidity and polypharmacy. The intervention seeks to improve the appropriateness of prescribing in primary care (PC), as measured by the medication appropriateness index (MAI) score at 6 and 12months, as compared with usual care. Methods/Design: Design:pragmatic cluster randomized clinical trial. Unit of randomization: family physician (FP). Unit of analysis: patient. Scope: PC health centres in three autonomous communities: Aragon, Madrid, and Andalusia (Spain). Population: patients aged 65-74years with multimorbidity (≥3 chronic diseases) and polypharmacy (≥5 drugs prescribed in ≥3months). Sample size: n=400 (200 per study arm). Intervention: complex intervention based on the implementation of the Ariadne principles with two components: (1) FP training and (2) FP-patient interview. Outcomes: MAI score, health services use, quality of life (Euroqol 5D-5L), pharmacotherapy and adherence to treatment (Morisky-Green, Haynes-Sackett), and clinical and socio-demographic variables. Statistical analysis: primary outcome is the difference in MAI score between T0 and T1 and corresponding 95% confidence interval. Adjustment for confounding factors will be performed by multilevel analysis. All analyses will be carried out in accordance with the intention-to-treat principle. Discussion: It is essential to provide evidence concerning interventions on PC patients with polypharmacy and multimorbidity, conducted in the context of routine clinical practice, and involving young-old patients with significant potential for preventing negative health outcomes. Trial registration: Clinicaltrials.gov, NCT02866799Publisher PDFPeer reviewe
Conducting polymer materials for bioelectronics applications
141 p.Esta tesis doctoral tiene como objetivo la síntesis de nuevos materiales poliméricos blandos y conductividad iónica y electrónica. Estos materiales han de suponer una mejora en ciertas aplicaciones bioelectrónicas y ser la interface entre la electrónica y la biología. Con el trabajo de esta tesis, han sido creados los siguientes materiales: Con el uso de un nuevo reticulante de Poli(3,4-etilendioxitiofeno)-poli(estireno sulfonato) (PEDOT:PSS) llamado divinilsulfona (DVS), hemos fabricado electrodos de PEDOT:PSS como films y también sobre tejidos al hacerlos conductores. Estos electrodos han sido usados para medir la actividad cardiaca en electrocardiografía. Un nuevo hidrogel que contiene Na+ ha sido creado como electrolito gel para el uso de dispositivos bioelectrónicos. Por último, nuevas dispersiones de PEDOT con polisacáridos han sido sintetizadas y posteriormente combinadas con líquidos iónicos para la fabricación de geles iónicos con alta conductividad electrónica e iónica, y flexibilidad. Con estas dispersiones también se han creado scaffolds porosos para el cultivo de células in vitro y su posterior monitorización gracias a sus propiedades conductoras. Los scaffolds son blandos, tienen paredes rugosas y poros interconectados, propiedades muy apropiadas para el cultivo de células.Polymat
BEL Lab. École des Mines de Saint Etienn