148 research outputs found

    Androgen Receptor Activation in Castration-Recurrent Prostate Cancer: The Role of Src-Family and Ack1

    Get PDF
    licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. Received: 2013.12.02; Accepted: 2014.01.06; Published: 2014.06.05 There is growing appreciation that castration-recurrent prostate cancer (CR-CaP) is driven by the continued expression of androgen receptor (AR). AR activation in CR-CaP through various mechanisms, including AR overexpression, expression of AR splice variants or mutants, increased expression of co-regulator proteins, and by post-translational modification, allows for the induction of AR-regulated genes in response to very low levels of tissue-expressed, so-called intracrine androgens, resulting in pathways that mediate CaP proliferation, anti-apoptosis and oncogenic aggressiveness. The current review focuses on the role played by Src-family (SFK) and Ack1 non-receptor tyrosine kinases in activating AR through direct phosphorylation, respectively, on tyrosines 534 or 267, and how these modifications facilitate progression to CR-CaP. The fact that SFK and Ack1 are central mediators for multiple growth factor receptor signaling pathways that become activated in CR-CaP, especially in the context of metastatic growth in the bone, has contributed to recent therapeutic trials using SFK/Ack1 inhibitors in monotherapy or in combination with antagonists of the AR activation axis. Key words: Src-family tyrosine kinases, Ack1, androgen receptor, prostate cancer, castration-recurrence

    Paxillin-Y118 phosphorylation contributes to the control of Src-induced anchorage-independent growth by FAK and adhesion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Focal adhesion kinase (FAK) and Src are protein tyrosine kinases that physically and functionally interact to facilitate cancer progression by regulating oncogenic processes such as cell motility, survival, proliferation, invasiveness, and angiogenesis.</p> <p>Method</p> <p>To understand how FAK affects oncogenesis through the phosphorylation of cellular substrates of Src, we analyzed the phosphorylation profile of a panel of Src substrates in parental and v-Src-expressing FAK+/+ and FAK-/- mouse embryo fibroblasts, under conditions of anchorage-dependent (adherent) and -independent (suspension) growth.</p> <p>Results</p> <p>Total Src-induced cellular tyrosine phosphorylation as well as the number of phosphotyrosyl substrates was higher in suspension versus adherent cultures. Although the total level of Src-induced cellular phosphorylation was similar in FAK+/+ and FAK-/- backgrounds, the phosphorylation of some substrates was influenced by FAK depending on adherence state. Specifically, in the absence of FAK, Src induced higher phosphorylation of p190RhoGAP, paxillin (poY118) and Crk irrespective of adhesion state, PKC-δ (poY311), connexin-43 (poY265) and Sam68 only under adherent conditions, and p56Dok-2 (poY351) and p120catenin (poY228) only under suspension conditions. In contrast, FAK enhanced the Src-induced phosphorylation of vinculin (poY100 and poY1065) and p130CAS (poY410) irrespective of adherence state, p56Dok-2 (poY351) and p120catenin (poY228) only under adherent conditions, and connexin-43 (poY265), cortactin (poY421) and paxillin (poY31) only under suspension conditions. The Src-induced phosphorylation of Eps8, PLC-γ1 and Shc (poY239/poY240) were not affected by either FAK or adherence status. The enhanced anchorage-independent growth of FAK-/-[v-Src] cells was selectively decreased by expression of paxillin<sup>Y118F</sup>, but not by WT-paxillin, p120catenin<sup>Y228F </sup>or Shc<sup>Y239/240F</sup>, identifying for the first time a role for paxillin<sup>poY118 </sup>in Src-induced anchorage-independent growth. Knockdown of FAK by siRNA in the human colon cancer lines HT-25 and RKO, resulted in increased paxillin<sup>poY118 </sup>levels under suspension conditions as well as increased anchorage-independent growth, supporting the notion that FAK attenuates anchorage-independent growth by suppressing adhesion-dependent phosphorylation of paxillin<sup>Y118</sup>.</p> <p>Conclusion</p> <p>These data suggest that phosphorylation of Src substrates is a dynamic process, influenced temporally and spatially by factors such as FAK and adhesion.</p

    HIV-1 expression induces cyclin D(1) expression and pRb phosphorylation in infected podocytes: cell-cycle mechanisms contributing to the proliferative phenotype in HIV-associated nephropathy

    Get PDF
    BACKGROUND: The aberrant cell-cycle progression of HIV-1-infected kidney cells plays a major role in the pathogenesis of HIV-associated nephropathy, however the mechanisms whereby HIV-1 induces infected glomerular podocytes or infected tubular epithelium to exit quiescence are largely unknown. Here, we ask whether the expression of HIV-1 genes in infected podocytes induces cyclin D(1) and phospho-pRb (Ser780) expression, hallmarks of cyclin D1-mediated G(1) → S phase progression. RESULTS: We assessed cyclin D(1) and phospho-pRb (Ser780) expression in two well-characterized models of HIV-associated nephropathy pathogenesis: HIV-1 infection of cultured podocytes and HIV-1 transgenic mice (Tg26). Compared to controls, cultured podocytes expressing HIV-1 genes, and podocytes and tubular epithelium from hyperplastic nephrons in Tg26 kidneys, had increased levels of phospho-pRb (Ser780), a target of active cyclin D(1)/cyclin-dependent kinase-4/6 known to promote G(1) → S phase progression. HIV-1-infected podocytes showed markedly elevated cyclin D(1) mRNA and cyclin D(1) protein, the latter of which did not down-regulate during cell-cell contact or differentiation, suggesting post-transcriptional stabilization of cyclin D(1) protein levels by HIV-1. The selective suppression of HIV-1 transcription by the cyclin-dependent kinase inhibitor, flavopiridol, abrogated cyclin D(1) expression, underlying the requirement for HIV-1 encoded products to induce cyclin D(1). Indeed, HIV-1 virus deleted of nef failed to induce cyclin D(1) mRNA to the level of other single gene mutant viruses. CONCLUSIONS: HIV-1 expression induces cyclin D(1) and phospho-pRb (Ser780) expression in infected podocytes, suggesting that HIV-1 activates cyclin D1-dependent cell-cycle mechanisms to promote proliferation of infected renal epithelium

    A mitotic kinase scaffold depleted in testicular seminomas impacts spindle orientation in germ line stem cells.

    Get PDF
    Correct orientation of the mitotic spindle in stem cells underlies organogenesis. Spindle abnormalities correlate with cancer progression in germ line-derived tumors. We discover a macromolecular complex between the scaffolding protein Gravin/AKAP12 and the mitotic kinases, Aurora A and Plk1, that is down regulated in human seminoma. Depletion of Gravin correlates with an increased mitotic index and disorganization of seminiferous tubules. Biochemical, super-resolution imaging, and enzymology approaches establish that this Gravin scaffold accumulates at the mother spindle pole during metaphase. Manipulating elements of the Gravin-Aurora A-Plk1 axis prompts mitotic delay and prevents appropriate assembly of astral microtubules to promote spindle misorientation. These pathological responses are conserved in seminiferous tubules from Gravin(-/-) mice where an overabundance of Oct3/4 positive germ line stem cells displays randomized orientation of mitotic spindles. Thus, we propose that Gravin-mediated recruitment of Aurora A and Plk1 to the mother (oldest) spindle pole contributes to the fidelity of symmetric cell division

    Gravin Orchestrates Protein Kinase A and β2-Adrenergic Receptor Signaling Critical for Synaptic Plasticity and Memory

    Get PDF
    A kinase-anchoring proteins (AKAPs) organize compartmentalized pools of protein kinase A (PKA) to enable localized signaling events within neurons. However, it is unclear which of the many expressed AKAPs in neurons target PKA to signaling complexes important for long-lasting forms of synaptic plasticity and memory storage. In the forebrain, the anchoring protein gravin recruits a signaling complex containing PKA, PKC, calmodulin, and PDE4D (phosphodiesterase 4D) to the β2-adrenergic receptor. Here, we show that mice lacking the α-isoform of gravin have deficits in PKA-dependent long-lasting forms of hippocampal synaptic plasticity including β2-adrenergic receptor-mediated plasticity, and selective impairments of long-term memory storage. Furthermore, both hippocampal β2-adrenergic receptor phosphorylation by PKA, and learning-induced activation of ERK in the CA1 region of the hippocampus are attenuated in mice lacking gravin-α. We conclude that gravin compartmentalizes a significant pool of PKA that regulates learning-induced β2-adrenergic receptor signaling and ERK activation in the hippocampus in vivo, thereby organizing molecular interactions between glutamatergic and noradrenergic signaling pathways for long-lasting synaptic plasticity, and memory storage

    FAK acts as a suppressor of RTK-MAP kinase signalling in Drosophila melanogaster epithelia and human cancer cells

    Get PDF
    Receptor Tyrosine Kinases (RTKs) and Focal Adhesion Kinase (FAK) regulate multiple signalling pathways, including mitogen-activated protein (MAP) kinase pathway. FAK interacts with several RTKs but little is known about how FAK regulates their downstream signalling. Here we investigated how FAK regulates signalling resulting from the overexpression of the RTKs RET and EGFR. FAK suppressed RTKs signalling in Drosophila melanogaster epithelia by impairing MAPK pathway. This regulation was also observed in MDA-MB-231 human breast cancer cells, suggesting it is a conserved phenomenon in humans. Mechanistically, FAK reduced receptor recycling into the plasma membrane, which resulted in lower MAPK activation. Conversely, increasing the membrane pool of the receptor increased MAPK pathway signalling. FAK is widely considered as a therapeutic target in cancer biology; however, it also has tumour suppressor properties in some contexts. Therefore, the FAK-mediated negative regulation of RTK/MAPK signalling described here may have potential implications in the designing of therapy strategies for RTK-driven tumours

    SSeCKS/Gravin/AKAP12 attenuates expression of proliferative and angiogenic genes during suppression of v-Src-induced oncogenesis

    Get PDF
    BACKGROUND: SSeCKS is a major protein kinase C substrate with kinase scaffolding and metastasis-suppressor activity whose expression is severely downregulated in Src- and Ras-transformed fibroblast and epithelial cells and in human prostate, breast, and gastric cancers. We previously used NIH3T3 cells with tetracycline-regulated SSeCKS expression plus a temperature-sensitive v-Src allele to show that SSeCKS re-expression inhibited parameters of v-Src-induced oncogenic growth without attenuating in vivo Src kinase activity. METHODS: We use cDNA microarrays and semi-quantitative RT-PCR analysis to identify changes in gene expression correlating with i) SSeCKS expression in the absence of v-Src activity, ii) activation of v-Src activity alone, and iii) SSeCKS re-expression in the presence of active v-Src. RESULTS: SSeCKS re-expression resulted in the attenuation of critical Src-induced proliferative and pro-angiogenic gene expression including Afp, Hif-1α, Cdc20a and Pdgfr-β, and conversely, SSeCKS induced several cell cycle regulatory genes such as Ptpn11, Gadd45a, Ptplad1, Cdkn2d (p19), and Rbbp7. CONCLUSION: Our data provide further evidence that SSeCKS can suppress Src-induced oncogenesis by modulating gene expression downstream of Src kinase activity

    Asymmetrical dispersal and putative isolation-by-distance of an intertidal blenniid across the Atlantic-Mediterranean divide

    Get PDF
    Transition zones are of high evolutionary interest because unique patterns of spatial variation are often retained. Here, we investigated the phylogeography of the peacock blenny, Salaria pavo, a small marine intertidal fish that inhabits rocky habitats of the Mediterranean and the adjacent Atlantic Ocean. We screened 170 individuals using mitochondrial and nuclear sequence data from eight locations. Four models of genetic structure were tested: panmixia, isolation-by-distance, secondary contact and phylogeographic break. Results indicated clear asymmetric migration from the Mediterranean to the Atlantic but only marginally supported the isolation-by-distance model. Additionally, the species displays an imprint of demographic expansion compatible with the last glacial maximum. Although the existence of a refugium in the Mediterranean cannot be discarded, the ancestral lineage most likely originated in the Atlantic, where most of the genetic diversity occurs.MarinERA project "Marine phylogeographic structuring during climate change: the signature of leading and rear edge of range shifting populations"; Eco-Ethology Research Unit' Strategic Plan [PEst-OE/MAR/UI0331/2011]; MARE from Fundacao para a Ciencia e a Tecnologia-FCT [UID/MAR/04292/2013]; CCMAR Strategic Plan from Fundacao para a Ciencia e a Tecnologia-FCT [PEst-C/MAR/LA0015/2011, UID/Multi/04326/2013]; FCT Portuguese Science Foundation [SFRH/BPD/109685/2015]info:eu-repo/semantics/publishedVersio
    • …
    corecore