60 research outputs found
Molecular and morphological diversity in the /Rhombisporum clade of the genus Entoloma with a note on E. cocles
A combined morphological and molecular genetic study of the European species within the /Rhombisporum clade of the genus Entoloma reveals a high species diversity. This group comprises typical grassland species with pronounced and welldifferentiated cheilocystidia, and a wide range of spore shapes varying from rhomboid to five-angled. To fix the concept of the classical species E. rhombisporum, a neotype is designated. Nine species are described as new to science based on the result of nrDNA ITS phylogeny with additional gap coding, and morphological characterization: E. caulocystidiatum, E. lunare, E. pararhombisporum, E. pentagonale, E. perrhombisporum, E. rhombiibericum, E. rhombisporoides, E. sororpratulense, and E. subcuboideum. The ITS sequences of the holotypes of previously described species belonging to the /Rhombisporum clade, viz., E. laurisilvae and E. pratulense have also been generated and are published here for the first time. Since many of the above-mentioned species have been misidentified as E. cocles, it seemed opportune to also study this species and to designate a neotype to fix its current concept. A key including European species is presented. As most of the species are potentially important indicators for threatened grassland communities, the 130 ITS barcodes newly generated for this study may be useful as a reference in conservation and metabarcoding projects. Agaricales . Conservation . Endangered grassland communities . Entolomataceae semi-cryptic diversity . Taxonomy . TricholomatinaepublishedVersio
Fungal Systematics and Evolution: FUSE 6
Fungal Systematics and Evolution (FUSE) is one of the journal series to address the “fusion” between morphological data and
molecular phylogenetic data and to describe new fungal taxa and interesting observations. This paper is the 6th contribution in
the FUSE series—presenting one new genus, twelve new species, twelve new country records, and three new combinations. The
new genus is: Pseudozeugandromyces (Laboulbeniomycetes, Laboulbeniales). The new species are: Albatrellopsis flettioides from
Pakistan, Aureoboletus garciae from Mexico, Entomophila canadense from Canada, E. frigidum from Sweden, E. porphyroleucum
from Vietnam, Erythrophylloporus flammans from Vietnam, Marasmiellus boreoorientalis from Kamchatka Peninsula in the
Russian Far East, Marasmiellus longistipes from Pakistan, Pseudozeugandromyces tachypori on Tachyporus pusillus (Coleoptera,
Staphylinidae) from Belgium, Robillarda sohagensis from Egypt, Trechispora hondurensis from Honduras, and Tricholoma
kenanii from Turkey. The new records are: Arthrorhynchus eucampsipodae on Eucampsipoda africanum (Diptera, Nycteribiidae)
from Rwanda and South Africa, and on Nycteribia vexata (Diptera, Nycteribiidae) from Bulgaria; A. nycteribiae on Eucampsipoda
africanum from South Africa, on Penicillidia conspicua (Diptera, Nycteribiidae) from Bulgaria (the first undoubtful
country record), and on Penicillidia pachymela from Tanzania; Calvatia lilacina from Pakistan; Entoloma shangdongense from
Pakistan; Erysiphe quercicola on Ziziphus jujuba (Rosales, Rhamnaceae) and E. urticae on Urtica dioica (Rosales, Urticaceae)
from Pakistan; Fanniomyces ceratophorus on Fannia canicularis (Diptera, Faniidae) from the Netherlands; Marasmiellus biformis
and M. subnuda from Pakistan; Morchella anatolica from Turkey; Ophiocordyceps ditmarii on Vespula vulgaris (Hymenoptera,
Vespidae) from Austria; and Parvacoccum pini on Pinus cembra (Pinales, Pinaceae) from Austria. The new combinations
are: Appendiculina gregaria, A. scaptomyzae, and Marasmiellus rodhallii. Analysis of an LSU dataset of Arthrorhynchus including
isolates of A. eucampsipodae from Eucampsipoda africanum and Nycteribia spp. hosts, revealed that this taxon is a complex
of multiple species segregated by host genus. Analysis of an SSU–LSU dataset of Laboulbeniomycetes sequences revealed support
for the recognition of four monophyletic genera within Stigmatomyces sensu lato: Appendiculina, Fanniomyces, Gloeandromyces,
and Stigmatomyces sensu stricto. Finally, phylogenetic analyses of Rhytismataceae based on ITS–LSU ribosomal DNA
resulted in a close relationship of Parvacoccum pini with Coccomyces strobi
What Do the First 597 Global Fungal Red List Assessments Tell Us about the Threat Status of Fungi?
Fungal species are not immune to the threats facing animals and plants and are thus also prone to extinction. Yet, until 2015, fungi were nearly absent on the IUCN Red List. Recent efforts to identify fungal species under threat have significantly increased the number of published fungal assessments. The 597 species of fungi published in the 2022-1 IUCN Red List update (21 July 2022) are the basis for the first global review of the extinction risk of fungi and the threats they face. Nearly 50% of the assessed species are threatened, with 10% NT and 9% DD. For regions with a larger number of assessments (i.e., Europe, North America, and South America), subanalyses are provided. Data for lichenized and nonlichenized fungi are also summarized separately. Habitat loss/degradation followed by climate change, invasive species, and pollution are the primary identified threats. Bias in the data is discussed along with knowledge gaps. Suggested actions to address these gaps are provided along with a discussion of the use of assessments to facilitate on-the-ground conservation efforts. A research agenda for conservation mycology to assist in the assessment process and implementation of effective species/habitat management is presented
What Do the First 597 Global Fungal Red List Assessments Tell Us about the Threat Status of Fungi?
Fungal species are not immune to the threats facing animals and plants and are thus also prone to extinction. Yet, until 2015, fungi were nearly absent on the IUCN Red List. Recent efforts to identify fungal species under threat have significantly increased the number of published fungal assessments. The 597 species of fungi published in the 2022-1 IUCN Red List update (21 July 2022) are the basis for the first global review of the extinction risk of fungi and the threats they face. Nearly 50% of the assessed species are threatened, with 10% NT and 9% DD. For regions with a larger number of assessments (i.e., Europe, North America, and South America), subanalyses are provided. Data for lichenized and nonlichenized fungi are also summarized separately. Habitat loss/degradation followed by climate change, invasive species, and pollution are the primary identified threats. Bias in the data is discussed along with knowledge gaps. Suggested actions to address these gaps are provided along with a discussion of the use of assessments to facilitate on-the-ground conservation efforts. A research agenda for conservation mycology to assist in the assessment process and implementation of effective species/habitat management is presented
European mushroom assemblages are darker in cold climates
Abstract: Thermal melanism theory states that dark-colored ectotherm organisms are at an advantage at low temperature due to increased warming. This theory is generally supported for ectotherm animals, however, the function of colors in the fungal kingdom is largely unknown. Here, we test whether the color lightness of mushroom assemblages is related to climate using a dataset of 3.2 million observations of 3,054 species across Europe. Consistent with the thermal melanism theory, mushroom assemblages are significantly darker in areas with cold climates. We further show differences in color phenotype between fungal lifestyles and a lifestyle differentiated response to seasonality. These results indicate a more complex ecological role of mushroom colors and suggest functions beyond thermal adaption. Because fungi play a crucial role in terrestrial carbon and nutrient cycles, understanding the links between the thermal environment, functional coloration and species’ geographical distributions will be critical in predicting ecosystem responses to global warming
Recommended from our members
European mushroom assemblages are darker in cold climates
Abstract: Thermal melanism theory states that dark-colored ectotherm organisms are at an advantage at low temperature due to increased warming. This theory is generally supported for ectotherm animals, however, the function of colors in the fungal kingdom is largely unknown. Here, we test whether the color lightness of mushroom assemblages is related to climate using a dataset of 3.2 million observations of 3,054 species across Europe. Consistent with the thermal melanism theory, mushroom assemblages are significantly darker in areas with cold climates. We further show differences in color phenotype between fungal lifestyles and a lifestyle differentiated response to seasonality. These results indicate a more complex ecological role of mushroom colors and suggest functions beyond thermal adaption. Because fungi play a crucial role in terrestrial carbon and nutrient cycles, understanding the links between the thermal environment, functional coloration and species’ geographical distributions will be critical in predicting ecosystem responses to global warming
Fungal systematics and evolution : FUSE 7
publishedVersio
What Do the First 597 Global Fungal Red List Assessments Tell Us about the Threat Status of Fungi?
Fungal species are not immune to the threats facing animals and plants and are thus also prone to extinction. Yet, until 2015, fungi were nearly absent on the IUCN Red List. Recent efforts to identify fungal species under threat have significantly increased the number of published fungal assessments. The 597 species of fungi published in the 2022-1 IUCN Red List update (21 July 2022) are the basis for the first global review of the extinction risk of fungi and the threats they face. Nearly 50% of the assessed species are threatened, with 10% NT and 9% DD. For regions with a larger number of assessments (i.e., Europe, North America, and South America), subanalyses are provided. Data for lichenized and nonlichenized fungi are also summarized separately. Habitat loss/degradation followed by climate change, invasive species, and pollution are the primary identified threats. Bias in the data is discussed along with knowledge gaps. Suggested actions to address these gaps are provided along with a discussion of the use of assessments to facilitate on-the-ground conservation efforts. A research agenda for conservation mycology to assist in the assessment process and implementation of effective species/habitat management is presented
Fungal Systematics and Evolution: FUSE 8
In this 8th contribution to the Fungal Systematics and Evolution series published by Sydowia, the authors formally describe 11 species: Cortinarius caryae, C. flavolilacinus, C. lilaceolamellatus, C. malodorus, C. olivaceolamellatus, C. quercophilus, C. violaceoflavescens, C. viridicarneus, Entoloma meridionale (Agaricales), Hortiboletus rupicapreus (Boletales), and Paraglomus peruvianum (Paraglomerales). The following new country records are reported: Bolbitius callistus (Agaricales) from Russia and Hymenoscyphus equiseti (Helotiales) from Sweden. Hymenoscyphus equiseti is proposed as a new combination for Lanzia equiseti, based on ITS and LSU sequence data in combination with morphological study
- …