42 research outputs found

    First report of Phytophthora capsici in the Lao PDR

    Get PDF
    Phytophthora capsici is reported for the first time in the Lao PDR. It was isolated from soil collected from the root zone of wilting red chilli (Capsicum annuum) plants in a polyhouse farm in Paksong district of Champasak province. The wilting chilli plants had typical symptoms of infection by P. capsici including root rot and necrosis of the outer cortex of the stem base. The isolate was identified using morphological and molecular markers. A pathogenicity trial demonstrated that the culture was pathogenic to a local cultivar of chilli seedlings

    Fungicide resistance management in Australian grain crops

    Get PDF
    Fungicide resistance is a serious and increasing problem in cropping systems worldwide. Fungicides are an important component of integrated disease management strategies for the protection of crops from the impacts of fungal diseases. However, as their use has increased, the effectiveness of some fungicides has been reduced by the development of fungicide resistant pathogen populations. Without intervention, more fungicides are likely to become ineffective

    First measurement of direct f0(980)f_0(980) photoproduction on the proton

    Get PDF
    We report on the results of the first measurement of exclusive f0(980)f_0(980) meson photoproduction on protons for Eγ=3.03.8E_\gamma=3.0 - 3.8 GeV and t=0.41.0-t = 0.4-1.0 GeV2^2. Data were collected with the CLAS detector at the Thomas Jefferson National Accelerator Facility. The resonance was detected via its decay in the π+π\pi^+ \pi^- channel by performing a partial wave analysis of the reaction γppπ+π\gamma p \to p \pi^+ \pi^-. Clear evidence of the f0(980)f_0(980) meson was found in the interference between PP and SS waves at Mπ+π1M_{\pi^+ \pi^-}\sim 1 GeV. The SS-wave differential cross section integrated in the mass range of the f0(980)f_0(980) was found to be a factor of 50 smaller than the cross section for the ρ\rho meson. This is the first time the f0(980)f_0(980) meson has been measured in a photoproduction experiment

    Study of doubly strange systems using stored antiprotons

    Get PDF
    Bound nuclear systems with two units of strangeness are still poorly known despite their importance for many strong interaction phenomena. Stored antiprotons beams in the GeV range represent an unparalleled factory for various hyperon-antihyperon pairs. Their outstanding large production probability in antiproton collisions will open the floodgates for a series of new studies of systems which contain two or even more units of strangeness at the P‾ANDA experiment at FAIR. For the first time, high resolution γ-spectroscopy of doubly strange ΛΛ-hypernuclei will be performed, thus complementing measurements of ground state decays of ΛΛ-hypernuclei at J-PARC or possible decays of particle unstable hypernuclei in heavy ion reactions. High resolution spectroscopy of multistrange Ξ−-atoms will be feasible and even the production of Ω−-atoms will be within reach. The latter might open the door to the |S|=3 world in strangeness nuclear physics, by the study of the hadronic Ω−-nucleus interaction. For the first time it will be possible to study the behavior of Ξ‾+ in nuclear systems under well controlled conditions

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Fungicide resistance management in Australian grain crops

    Get PDF
    Fungicide resistance is a serious and increasing problem in cropping systems worldwide. Fungicides are an important component of integrated disease management strategies for the protection of crops from the impacts of fungal diseases. However, as their use has increased, the effectiveness of some fungicides has been reduced by the development of fungicide resistant pathogen populations. Without intervention, more fungicides are likely to become ineffective
    corecore