16 research outputs found

    An Improved Method for Measuring Phthalates in Seawater With Blank Contamination Using GC-MS

    Get PDF
    Quantification of phthalates or phthalic acid esters (PAEs) might be problematic due to matrix overlap, auto-self absorbance and background scattering noise by the plastic lab materials although plastics have been reported in the release of PAEs. These materials (ambient air, reagents bottles, sampling devices, and various analytical instruments), are ubiquitous in the laboratory environment, thereby making it more difficult to reliably analyze of trace concentration of PAEs. Thus, in the current study, a straight forward and reliable protocol has been established for the analysis of PAEs including control of blank contamination, and the experimental conditions such as extraction time and temperature were optimized. The mass of PAEs in blank tests of selected materials ranged from 3±0.7 to 35±6 ng for liquid-liquid extraction (LLE) and from 5±1.8 to 63±15 ng for solid-phase extraction (SPE). For both extraction methods, higher blank values were measured for dibutyl phthalate (DBP) (35±6 ng, 12±3 ng), and DEHP (63±12 ng, 23±5 ng) in LLE and SPE, respectively. Average recoveries of PAEs in LLE were 90-97% and obtained with successive aliquots of 2 mL, 1 mL, and 1 mL dichloromethane (DCM). For SPE, recoveries up to 86-90% were achieved with successive aliquots of 5, 3, and 2 mL DCM at a sample flow rate of 5 mL min -1 . Under the optimized conditions, the method quantification limits (MQL) for PAEs was 10-20 ng L -1 for LLE and 10-35 ng L -1 for SPE. Moreover, the dissolved concentrations of PAEs from LDPE measured by the LLE method ranged < 1.5 to 5.83 ng cm -2, and those measured by SPE ranged from 1.0to256ngL -1 , in seawater samples of Sharm Obhur. The method has lower MQL values for LLE and SPE than average reported values of 10-100 ng L -1 and 30-100 ng L -1 , respectively

    Sunlight induced formation of surface Bi2O4-x-Bi2O3 nanocomposite during the photocatalytic mineralization of 2-chloro and 2-nitrophenol

    No full text
    The photocatalytic mineralization of 2-chlorophenol (2-CP) and 2-nitrophenol (2-NP) was investigated using \u3b1-Bi2O3. The experiments were performed both in complete spectrum and in the visible region (420\u2013800 nm) of the sunlight. The materials were fully characterized by means of UV\u2013vis diffuse reflectance spectroscopy (DRS), photoluminescence (PL), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis and field emission scanning electron microscopy (FESEM). \u3b1-Bi2O3 showed considerably higher activity for the mineralization of 2-nitrophenol and 2-chlorophenol under natural sunlight exposure, however still appreciable activity was observed in the visible region. Formation of surface nanocomposites Bi2O4 12x\u2013Bi2O3 was observed under sunlight irradiation due to the presence of UV light. The sunlight exposed Bi2O3, i.e. Bi2O4 12x\u2013Bi2O3 composite, showed excellent activity for the degradation and mineralization of 2-CP and 2-NP in the visible region of sunlight. A key role of both hydroxyl and superoxide anion radicals was evidenced in the degradation and mineralization processes under sunlight while only hydroxyl radicals were identified as major facilitators under visible light irradiation

    Anti-microbial activity of cobalt doped zinc oxide nanoparticles: Targeting water borne bacteria

    Get PDF
    Zinc oxide (ZnO) nanoparticles were chemically synthesized with cobalt doping and characterized through UV–visible spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) techniques. Cobalt doped ZnO nanoparticles were found to be crystalline having a single phase as confirmed by XRD and SEM. It has been observed that the increase in the percentage of Co from 0% to 5% in ZnO, increases the crystallite size from 20.5 to 25.7 nm and accordingly its band gap varies from 3.22 to 3.30 eV. After treatment morphology of materials was changed from rod to spherical shaped. Further these nanomaterials were applied as a bactericidal agent to control water borne bacterial pathogen. Cobalt doping on zinc oxide and exposure of sunlight enhanced the antibacterial activity against water borne bacterial isolate at 50 μg concentration. Interestingly, most effective bactericidal results were found against Escherichia coli and Vibrio cholerae

    Mercury meniscus on solid silver amalgam electrode as a sensitive electrochemical sensor for tetrachlorvinphos

    No full text
    The in-house prepared mercury meniscus modified solid silver amalgam electrode (m-AgSAE) was successfully applied for the detection of organophosphate pesticide tetrachlorvinphos in pH 7 buffer solution. The electrochemical performance of m-AgSAE for the reduction of tetrachlorvinphos was evaluated using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and square wave voltammetry (SWV), respectively. The surface morphology of solid silver electrode (AgE), as-amalgamated solid silver amalgam electrode (AgSAE), and polished solid silver amalgam electrode (p-AgSAE) was examined by field emission scanning electron microscopy (FESEM). Among the applied techniques, DPV and SWV analysis showed a remarkable increase in the reduction peak current and provided a simple, fast, and sensitive method for the determination of tetrachlorvinphos. The electrochemical impedance spectroscopy (EIS) was used to correlate the electrocatalytic activity of AgSAE, p-AgSAE and m-AgSAE with their interfacial charge transport capabilities. Under the optimized experimental conditions, the DPV and SWV responses were linear over the 1–9 μM and 10–50 μM concentration ranges with a detection limit of 0.06 μM for DPV and 0.04 for SWV. The estimation of tetrachlorvinphos in the ground and waste water samples with the proposed method was in good agreement with that of the added amount. The proposed electrochemical method not only extends the application of non-toxic m-AgSAE, but also offers new possibilities for fast and sensitive analysis of tetrachlorvinphos and its structural analogs in environmental samples. Keywords: Organophosphate pesticide, Tetrachlorvinphos, Electrochemical sensor, Mercury meniscus modified solid silver amalgam electrode, Electrocatalytic reductio

    Phthalate esters and plastic debris abundance in the Red Sea and Sharm Obhur and their ecological risk level

    No full text
    Highlights • This study examined MP concentrations and PAE distribution in a semi-enclosed Sharm Obhur leading to the Red Sea. • DEP, DBP and DEHP are the predominant PAEs. • A positive relationship was found between PAE concentration and PDs abundance. • The ecological risk of PAEs and PDs was found from low to moderate. The abundance of plastic debris (PDs) and its correlation with phthalic acid esters (PAEs), a class of pollutants associated with plastics, is not well understood, although PDs have been reported in relation to the release and distribution of aquatic pollutants such as PAEs. Few studies have linked the distribution of these pollutants in seawater. The current study examined the abundance and relationship of PDs and PAEs in seawater from Sharm Obhur and the Red Sea. Estimates were also made of their ecological impacts. Sharm Obhur is a semi-enclosed bay on the eastern shore of the Red Sea, near Jeddah, Saudi Arabia, and is heavily impacted by human activities. Contaminants from Sharm Obhur may be transported into the deep waters of the Red Sea by the subsurface outflow. The PAEs concentrations in the study area ranged from 0.8 to 1224 ng/L. Among the six PAEs studied, diethyl phthalate (DEP) (22–1124 ng/L), di-n-butyl phthalate (DBP) (9–346 ng/L) and di (2-ethylhexyl) phthalate (DEHP) (62–640 ng/L) were the predominant additives detected across all the sampling sits. Whereas the other PAEs, dimethyl phthalate (DMP) (5–76 ng/L), benzyl butyl phthalate (BBP) (4–25 ng/L) and di-n-octyl phthalate DnOp (0.5–80 ng/L) were generally lower in most samples. The sum of the six analyzed PAEs (∑6 PAEs) was lower at Sharm Obhur (587 ± 82 ng/L) and in the Red Sea shelf (677 ± 182 ng/L) compared to the Red Sea shelf break (1266 ± 354 ng/L). This suggests that degradation and adsorption of PAEs were higher in Sharm Obhur and on the shelf than on the shelf break. In contrast, there was no difference in the abundance of PDs between Sharm Obhur (0.04 ± 0.02 PDs/m3), Red Sea shelf (0.05 ± 0.02 PDs/m3) and in the Red Sea shelf break (0.03 ± 0.1 PDs/m3). Polyethylene (32%) and polypropylene (8%) were dominant, mostly smaller than 5 mm2 (78%), with the majority consisting of white (52%) and black (24%) fragments (39%), fibers (35%) and films (24%). A positive correlation between PAE concentration and abundance of PDs, suggests either a common source or a causal link through leaching. The ecological risk of ∑4PAEs (DMP, DEP, DBP and DEHP) ranged from (0.20–0.78), indicating a low to moderate risk for the Red Sea. The pollution index of PDs ranged from (0.14–0.36), showing that the Sharm Obhur and both sites of Red Sea suffered relatively low pollution
    corecore