52 research outputs found

    Lithium Content of 160 Beverages and Its Impact on Lithium Status in Drosophila melanogaster

    Get PDF
    Lithium (Li) is an important micronutrient in human nutrition, although its exact molecular function as a potential essential trace element has not yet been fully elucidated. It has been previously shown that several mineral waters are rich and highly bioavailable sources of Li for human consumption. Nevertheless, little is known about the extent in which other beverages contribute to the dietary Li supply. To this end, the Li content of 160 different beverages comprising wine and beer, soft and energy drinks and tea and coffee infusions was analysed by inductively coupled plasma mass spectrometry (ICP-MS). Furthermore, a feeding study in Drosophila melanogaster was conducted to test whether Li derived from selected beverages changes Li status in flies. In comparison to the average Li concentration in mineral waters (108 µg/L; reference value), the Li concentration in wine (11.6 ± 1.97 µg/L) and beer (8.5 ± 0.77 µg/L), soft and energy drinks (10.2 ± 2.95 µg/L), tea (2.8 ± 0.65 µg/L) and coffee (0.1 ± 0.02 µg/L) infusions was considerably lower. Only Li-rich mineral water (~1600 µg/L) significantly increased Li concentrations in male and female flies. Unlike mineral water, most wine and beer, soft and energy drink and tea and coffee samples were rather Li-poor food items and thus may only contribute to a moderate extent to the dietary Li supply. A novelty of this study is that it relates analytical Li concentrations in beverages to Li whole body retention in Drosophila melanogaster

    Antimicrobial promotion of pig growth is associated with tissue-specific remodeling of bile acid signature and signaling

    Get PDF
    The spread of bacterial resistance to antimicrobials (AMA) have intensified efforts to discontinue the non-therapeutic use of AMA in animal production. Finding alternatives to AMA, however, is currently encumbered by the obscure mechanism that underlies their growth-promoting action. In this report, we demonstrate that combinations of antibiotics and zinc oxide at doses commonly used for stimulating growth or preventing post-weaning enteritis in pigs converge in promoting microbial production of bile acids (BA) in the intestine. This leads to tissue-specific modifications in the proportion of BA, thereby amplifying BA signaling in intestine, liver, and white adipose tissue (WAT). Activation of BA-regulated pathways ultimately reinforces the intestinal protection against bacterial infection and pathological secretion of fluids and electrolytes, attenuates inflammation in colon and WAT, alters protein and lipid metabolism in liver, and increases the circulating levels of the hormone FGF19. Conceivably, these alterations could spare nutrients for growth and improve the metabolic efficiency of AMA-treated animals. This work provides evidence that BA act as signaling molecules that mediate host physiological, metabolic, and immune responses to the AMA-induced alterations in gut microbial metabolism, eventually permitting the growth-promoting action of AMA. Consequently, BA emerge as a promising target for developing efficacious alternatives to AMA

    Avens Root (Geum Urbanum L.) Extract Discovered by Target-Based Screening Exhibits Antidiabetic Activity in the Hen's Egg Test Model and Drosophila melanogaster

    Get PDF
    Medicinal plant extracts are becoming increasingly important as an alternative for traditional drugs against diabetes mellitus (DM). For this reason, we initialized a target-based screening of 111 root extracts from an open access plant extract library (PECKISH) by ascertaining their in-vitro inhibitory efficacy on α-glucosidase. The two most active extracts Geum urbanum L. (roseroot) and Rhodiola rosea L. (avens root) were further tested for their antidiabetic activities in terms of their impact on different regulatory key points of glucose homeostasis. To this end, various enzyme- and cell culture-based in-vitro assays were employed including the determination of sodium-dependent glucose transporter 1 (SGLT1) activity in Caco-2 monolayers by Ussing chambers and of glucose transporter 4 (GLUT4) translocation in a GFP-reporter cell line. Subsequently, the antidiabetic potential of the root extracts were further evaluated in in-vivo models, namely hen's eggs test and the fruit fly Drosophila melanogaster. Avens root extract was found to be a more potent inhibitor of the enzymes α-glucosidase and dipeptidyl peptidase-4 (DPP4) than roseroot extract. Most importantly, only avens root extract exhibited antidiabetic activity in the two in-vivo models eliciting a reduced blood glucose level in the in-ovo model and a decline of the triglyceride level in a dietary starch-induced D. melanogaster obesity model. Analyses of the polyphenolic composition of the avens root extract by HPLC revealed a high content of ellagic acid and its derivatives as well as ellagitannins such as pedunculagin, stenophyllanin, stachyurin, casuarinin and gemin A. In conclusion, avens root extract represents a promising medicinal plant that should be considered in further in-vivo studies on hyperglycemia in laboratory rodents and humans

    Chicken or the Egg: The Reciprocal Association Between Feeding Behavior and Animal Welfare and Their Impact on Productivity in Dairy Cows

    Get PDF
    Feeding behavior in dairy cattle has a significant impact on feed efficiency, which is important for increasing the profitability of livestock and, at the same time, reducing the environmental impact. Feeding behavior can be measured by feeding time, meal duration, meal frequency, feeding rate, and rumination time. Higher feed intake is related to lower feed efficiency; whereas, an increase in feeding time facilitates chewing, reduces feed particle size and increases its digestibility. More frequent and shorter meals are usually associated with a more efficient use of feed due to improvement of feed digestibility. Rumination time is positively associated with milk production. Impaired health is associated with variations in feeding behavior, which can be used to identify and predict some diseases such as ketosis, mastitis, or lameness. Changes in rumination time are also a reliable indicator of mastitis, lameness, ketosis, abomasal displacement, and the onset of calving. In addition to the cause-effect relationship between disease and changes in feeding behavior, there are also some cases in which changes in feeding behavior may lead to an increased risk of disease, as exemplified by the relationship of feeding rate with sub-acute ruminal acidosis. Feeding behavior is regulated by internal and external factors and some of them are relevant for animal welfare. The main welfare-associated factors influencing feeding behavior are social behavior and temperament, and environmental effects. Cattle are social animals and hierarchy has a notable impact on feeding behavior, especially when access to feed is limited. Competition for feed causes a reduction in the average feeding time but increases feeding rate. Excitable animals visit the feeder more often and spend less time per meal. High environmental temperature affects feeding behavior, as heat-stressed cattle change their feeding pattern by concentrating the feeding events in crepuscular hours, leading to an increased risk of sub-acute ruminal acidosis. In conclusion, feeding behavior is a determinant feature for improving efficiency, productivity and welfare of dairy cattle. Routine assessment of feeding behavior allows monitoring of health and production status of dairy cattle at the individual and farm level, which is a useful tool to optimize the management of livestock

    Atlantic Salmon (Salmo salar L.) as a Marine Functional Source of Gamma-Tocopherol

    Get PDF
    Gamma tocopherol (gT) exhibits beneficial cardiovascular effects partly due to its anti-inflammatory activity. Important sources of gT are vegetable oils. However, little is known to what extent gT can be transferred into marine animal species such as Atlantic salmon by feeding. Therefore, in this study we have investigated the transfer of dietary gT into salmon. To this end, fish were fed a diet supplemented with 170 ppm gT for 16 weeks whereby alpha tocopherol levels were adjusted to 190 ppm in this and the control diet. Feeding gT-rich diets resulted in a three-fold increase in gT concentrations in the liver and fillet compared to non-gT-supplemented controls. Tissue alpha tocopherol levels were not decreased indicating no antagonistic interaction between gamma- and alpha tocopherol in salmon. The concentration of total omega 3 fatty acids slightly increased in response to dietary gT. Furthermore, dietary gT significantly decreased malondialdehyde in the fillet, determined as a biomarker of lipid peroxidation. In the liver of gT fed salmon we observed an overall down-regulation of genes involved in lipid homeostasis. Additionally, gT improved the antioxidant capacity by up-regulating Gpx4a gene expression in the pyloric caeca. We suggest that Atlantic salmon may provide a marine functional source capable of enriching gT for human consumption

    N-3 fatty acids combined with flavan-3-ols prevent steatosis and liver injury in a murine model of NAFLD

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) affects 25% of adults and at present no licensed medication has been approved. Despite its complex patho-physiology, dietary strategies aiming at delaying or preventing NAFLD have taken a reductionist approach, examining the impact of single components. Accumulating evidence suggests that n-3 LC-PUFAs are efficacious in regulating lipogenesis and fatty acid oxidation. In addition, plant derived flavonoids are also emerging as a dietary strategy for NAFLD prevention, with efficacy attributed to their insulin sensitising and indirect antioxidant effects. Based on knowledge of their complementary molecular targets, we aimed to demonstrate that the combination of n-3 LC-PUFA (n-3) and flavan-3-ols (FLAV) prevents NAFLD. In a high-fat high-fructose (HF/HFr) fed C57Bl/6 J mouse model, the independent and interactive impact of n-3 and FLAV on histologically defined NAFLD, insulin sensitivity, weight gain, intestinal and hepatic gene expression, intestinal bile acids were examined. Only the combination of FLAV and n-3 (FLAVn-3) prevented steatosis as evidenced by a strong reduction in hepatocyte ballooning. While FLAV reduced body (− 28–30%), adipose tissue (− 45–50%) weights and serum insulin (− 22–25%) as observed following an intra-peritoneal glucose tolerance test, n-3 downregulated the expression of Srebf1 and the lipogenic genes (Acaca, Fasn). Significant impacts of interventions on intestinal bile acid metabolism, farnesoid X receptor (Fxr) signalling in the intestine and liver, and hepatic expression of fatty acid transporters (Fabp4, Vldlr, Cd36) were also evident. FLAVn-3 may be a novel intervention for NAFLD. Future research should aim to demonstrate its efficacy in the prevention and treatment of human NAFLD

    Nutritional Strategies for Optimizing Nitrogen Utilization by Dairy Cows

    No full text
    266 p.Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 2004.A meta-analytic review and three experiments with multiparous Holstein cows were conducted to test the hypothesis that the crude protein (CP) content of the diet can be decreased to improve the efficiency of N utilization for milk production without compromising the supply of metabolizable protein and the lactational performance of dairy cows. Results from the meta-analysis showed that large variation exits in the responses of dairy cows to the amount and source of dietary CP. A large proportion of this variation is explained by the source of CP in the control diets, the proportion and source of rumen undegradable protein in the experimental diets, and the CP percentage of the diet. Experiment 1 was designed as a 6 x 6 Latin square to examine the effects of the percentage and source of CP and the amount of starch in the diet of dairy cows on ruminal fermentation, passage of nutrients to the small intestine, and nutrient digestibility. Two sources of CP (soybean meal [SBM] and a mixture of SBM and a blend of animal-marine protein supplements plus rumen-protected Met) and three percentages of dietary protein (14, 16, and 18) were combined into six treatments. In experiment 2, the effects of the same treatments on the lactational performance and efficiency of N utilization for milk production were evaluated in a 210-day lactation trial that involved 60 cows. In experiment 3, four cows were used in a 4 x 4 Latin square design to evaluate the replacement of SBM with expeller SBM, heat-xylose treated SBM, or whole roasted soybeans. Results indicate that the CP percentage of the diet of lactating cows that consume large amounts of feed can be decreased to 16 to 17% to improve the efficiency of N utilization for milk production without compromising the supply of metabolizable protein and lactational performance of dairy cows if the source and amount of dietary CP and carbohydrate are properly matched. In addition, it appears that the escape of rumen undegradable protein in dairy cows that consume large quantities of corn-SBM-based diets might be underestimated by current feeding standards.U of I OnlyRestricted to the U of I community idenfinitely during batch ingest of legacy ETD

    Early Experience to Flavor Diversity Influences Food Selection and Intake by Sheep

    No full text

    Diet Palatability Influences the Feeding behaviour of Sheep

    No full text
    corecore