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Abstract 

Non-alcoholic fatty liver disease (NAFLD) affects 25% of adults and at present no licensed 

medication has been approved. Despite its complex patho-physiology, dietary strategies 

aiming at delaying or preventing NAFLD have taken a reductionist approach, examining the 

impact of single components. Accumulating evidence suggests that n-3 LC-PUFAs are 

efficacious in regulating lipogenesis and fatty acid oxidation. In addition, plant derived 

flavonoids are also emerging as a dietary strategy for NAFLD prevention, with efficacy 

attributed to their insulin sensitising and indirect antioxidant effects. Based on knowledge of 

their complementary molecular targets, we aimed to demonstrate that the combination of n-3 

LC-PUFA (n-3) and flavan-3-ols (FLAV) prevents NAFLD.  In a high-fat high-fructose 

(HF/HFr) fed C57Bl/6J mouse model, the independent and interactive impact of n-3 and 

FLAV on histologically defined NAFLD, insulin sensitivity, weight gain, intestinal and hepatic 

gene expression, intestinal bile acids were examined. Only the combination of FLAV and n-3 

(FLAVn-3) prevented steatosis as evidenced by a strong reduction in hepatocyte ballooning. 

Whilst FLAV reduced body (-28-30%), adipose tissue (-45-50%) weights and serum insulin (-

22-25%) as observed following an intra-peritoneal glucose tolerance test, n-3 downregulated 

the expression of Srebf1 and the lipogenic genes (Acaca, Fasn). Significant impacts of 

interventions on intestinal bile acid metabolism, farnesoid X receptor (Fxr) signaling in the 

intestine and liver, and hepatic expression of fatty acid transporters (Fabp4, Vldlr, Cd36) 

were also evident. FLAVn-3 may be a novel intervention for NAFLD. Future research should 

aim to demonstrate its efficacy in the prevention and treatment of human NAFLD.   

 

Keywords: fish oil; flavonoids; Srebp-1c, bile acids, NASH. 
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1. INTRODUCTION 

Non-alcoholic fatty liver disease (NAFLD) associated with obesity, has a global prevalence 

of 25% in adults [1].  It is a spectrum of progressive liver damage ranging from benign 

steatosis, to non-alcoholic steatohepatitis (NASH) characterised by necro-inflammation and 

hepatocyte injury [2]. In about 10% of patients, NASH leads to fibrosis and cirrhosis and an 

increased risk of liver failure and hepatocellular carcinoma [3]. Increased CVD incidence is 

the most prevalent clinical feature of NAFLD [4].  

The pathogenic progression of NAFLD is characterised by a loss of insulin sensitivity and 

hepatocyte accumulation of fat, which can induce lipotoxicity through oxidative stress and a 

pro-inflammatory state, leading to cellular damage [5]. Emerging evidence indicates that 

alterations in bile acid metabolism and associated farnesoid X nuclear receptor (Fxr) 

signalling also contribute to the development of NAFLD and obesity [6].   

At present no licensed medication or surgical procedure have been approved for NAFLD. 

Available rodent data is encouraging regarding the efficacy of fish derived n-3 fatty acids 

(eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) in NAFLD [7], regulating 

lipogenesis and fatty acid oxidation (via Srebp-1c and Ppara, respectively) [8]. However, in 

human randomised controlled trials (RCT), fish oil supplementation has shown mixed 

findings [9], with largely marginal effects on histologically defined NAFLD [10] and no impact 

on insulin action.  Flavan-3-ols (FLAV), a class of plant bioactive flavonoid compounds found 

in cocoa, tea and berries, are also emerging as a dietary strategy for NAFLD prevention, 

with efficacy attributed to their insulin sensitising, indirect antioxidant and anti-inflammatory 

effects [11].    

Despite the complexity of the NAFLD patho-physiology, to date dietary strategies which 

target NAFLD have taken a reductionist approach, examining the impact of single 

interventions. Here, based on their likely complementarity molecular targets, we examined 

for the first time the combined effect of n-3 and FLAV on NAFLD development using a high-

fat high-fructose (HF/HFr) mouse model. NAFLD severity was established by human 

histological NAFLD activity scoring (NAS) of the hepatic tissue, with insulin sensitivity 
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assessed by intra-peritoneal glucose tolerance testing, targeted gene expression profiling 

and biochemical analyses performed in order to gain a mechanistic insight.  

 

2. MATERIALS AND METHODS 

2.1 Study approval 

All experimental procedures and protocols used in this study were reviewed and approved 

by the Animal Welfare and Ethical Review Body (AWERB) and were conducted within the 

provisions of the Animals (Scientific Procedures) Act 1986 (ASPA). 

 

2.2 Animal experimental design and dietary treatments 

Male C57BL/6J mice aged 4 weeks (n=50, Charles River Laboratories (Margate, UK) were 

maintained in 12 h light/dark cycle, under conditions of constant temperature (21 ± 2 °C) and 

humidity (55 ± 10%). After feeding a standard RM3 diet (Special Diet Services, Essex, UK) 

for two weeks, mice were assigned to five experimental groups (n=10 per group) and 

allowed free access to a control diet (C), high fat/high fructose (HF/HFr) diet, or a HF/HFr 

diet supplemented with cocoa powder (HF/HFr + FLAV, Chococru®, London, UK), fish oil 

(HF/HFr + n-3; EPAX, Oslo, Norway) or a combination of both (HF/HFr + FLAVn-3) 

(Research Diet Inc., New Brunswick, USA) for 16 weeks (Supplementary Table S1-S3). 

The FLAV and n-3 supplemented diets contained 667 µg/g cocoa flavan-3-ol monomers 

(epicatechin and catechin), and 6.67 mg EPA+DHA/g, which provided the animals with daily 

doses of 60, 7, 400 and 280 mg/kg body weight of (-)-epicatechin, (+)-catechin, EPA and of 

DHA respectively. Using allometric scaling this equated to physiologically relevant human 

(60 Kg body weight) equivalent doses (HED) of 255mg of epicatechin, 30mg catechin, 1.7g 

EPA and 1.2g DHA per day [12], which are the levels found in 30 g of FLAV-rich cocoa [13] 

and one large portion of oily fish [14], respectively. Food intake was assessed twice a week 

and food pellets were replaced every other day to avoid oxidation of the bioactive 

components. At week 16, animals were sedated and blood was collected by cardiac 
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puncture followed by trans-cardiac perfusion of ice-cold saline containing heparin (10 

units/ml). Plasma/serum samples were isolated by centrifugation at 2000 x g for 10 min and 

samples were snap-frozen and stored at -80° C. Livers were rapidly removed, rinsed with 

ice-cold NaCl (150 mmol/L), blotted and weighed. A lobe from each liver was preserved in 

formalin for histological analyses, and the remainder anatomical lobes were either snap-

frozen in liquid nitrogen or transferred into an RNA preservation solution (Qiagen, 

Manchester, UK) for gene expression analysis. 

 

2.3 Intra-peritoneal glucose tolerance test  

At the end of week 15, mice were fasted for 16 hours before being administered D-glucose 

(Sigma-Aldrich, Poole, UK) by intraperitoneal injection (2g/Kg body weight). Blood glucose 

was measured at 0, 10, 20, 30, 60 and 120 min using a AlphaTRAK 2 glucometer (Abbott 

Laboratories Ltd., Maidenhead, UK). Additional blood samples (20μl) were collected at 

baseline, 15 and 120 min into EDTA coated microvette tubes (Sarstedt Ltd., Leicester, UK), 

and concentrations of insulin were determined using a commercial ELISA kit (Crystal-Chem, 

Downers Grove, US). Insulin resistance was estimated by the homeostasis model 

assessment method (HOMA) [fasting plasma insulin (mU/ml) × fasting plasma glucose 

(mM)/22.5] [15]. 

 

2.4 Histological and Biochemical analyses 

Formalin-fixed murine liver specimens were processed for hematoxylin and eosin (H&E) 

staining as described previously [16]. The severity of liver disease was evaluated 

histologically by two blinded histopathologists, using the NAS scoring system, which is the 

standard system for reporting the extent of damage in human biopsy samples [17] and 

represents the combined semi-quantitated pathology score for steatosis (graded 0-3), lobular 

inflammation (graded 0-3), and hepatocyte ballooning (graded 0-2) and ranges from 0-8 [18]. 

NAS was calculated for each rodent group. Total lipids were extracted from 500 mg of food 

pellets or from 300 mg of liver with chloroform/methanol (2:1 v/v) and fatty acids were 
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analysed as reported previously [19]. The triglyceride content of the livers was carried out 

using the triglycerides Liquicolor® reagent (Cambridge Life Sciences Ltd, Ely, UK) following 

the manufacturer’s instructions. Lipid peroxidation end-products (LPO) were measured in 

liver homogenates with a colorimetric assay (Oxford Biomedical Research, Upper-Heyford, 

UK). AST, ALT and creatinine were quantified using commercially available kits (Werfen, 

Warrington, UK) on a clinical chemistry analyser IL650. Plasma leptin was measured using 

the Procarta mouse simplex immunoassay kit (Affymetrix eBioscience, Austria).  

 

2.5 Taqman Low Density Array (TLDA), qRT-PCR  

TLDA analysis was carried out on [20] samples from each of the 5 study groups (150ng 

RNA/TLDA port). Validation of the TLDA data by qRT-PCR was performed on an ABI prism 

7500 detection system (Applied Biosystems) as previously described [21] with primer probe 

sets from Applied Biosystem (Supplementary Table S4a and Table S4b). 

 

2.6 Flavan-3-ol metabolites and bile acids analyses 

Frozen liver samples (500mg) were lyophilized and ground before being processed 

according to Bresciani et al [22]. Briefly, proteins from tissue samples were precipitated with 

400 μL 20% (v:v) TCA and then extracted with 3 mL of cold methanol. The samples were 

vortexed vigorously for 5 min, placed in a sonicator bath for 5 min, and then centrifuged 

(4,000 g for 5 min). A second extraction was performed for each sample with 3 mL methanol 

as described above. The two supernatants were pooled and dried under vacuum by rotary 

evaporation. Finally, the pellet was suspended in 150 μL of 50% (v:v) methanol acidified with 

1% (v:v) formic acid. Urine samples were defrosted, centrifuged for 5 min at 8,765g, and 

diluted 1:4 with water containing 0.1% formic acid before analysis. 

Flavanol, procyanidin content (by degree of polymerization 1-10) and xanthines (caffeine 

and theobromine) of the cocoa powder wer analysed following published AOAC methods 

[23, 24]. Flavan-3-ol metabolites in liver and urine samples were analysed using ultra-high 
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performance liquid chromatography coupled with mass spectrometry (UHPLC-MS/MS) using 

an UHPLC DIONEX Ultimate 3000 equipped with a TSQ Vantage triple quadrupole mass 

spectrometer (Thermo Fisher Scientific Inc., San Jose, CA, USA) fitted with a heated-

electrospray ionization source (H-ESI; Thermo Fisher Scientific Inc.). For UHPLC, mobile 

phase A was 0.5% formic acid in water and mobile phase B was acetonitrile containing 0.5% 

formic acid. Separations were performed with a Kinetex PFP (50 × 2.1 mm) column, 2.6 μm 

particle size (Phenomenex, Macclesfield, UK). The gradient started with 1%B, keeping 

isocratic conditions for 1 min, reaching 40%B at 15 min, followed by 2 min at 80% B and 

then 4 min at the start conditions to re-equilibrate the column. The flow rate was set at 0.3 

mL/min, the injection volume was 5 μL, and the column was thermostated at 35°C. The 

applied method consisted in the selective determination of each target precursor ion by the 

acquisition of characteristic product ions in the “selected reaction monitoring” (SRM) mode, 

with negative ionization. The MS worked with capillary temperature at 270 °C, while the 

source at 200 °C. The sheath gas flow was 50 units, while auxiliary gas pressure was set to 

5 units. The source voltage was 3 kV. Ultra-high purity argon gas was used for collision-

induced dissociation (CID). Data processing was performed using Xcalibur software from 

Thermo Scientific. Most of the compounds were quantified by comparison with their 

corresponding standards; while 5-(3'-hydroxy-phenyl)valeric acid-sulfate, dihydroxyphenyl γ 

valerolactone-sulfates, and trihydroxyphenyl-y-valerolactone-sulfate,  were quantified as 3’-

hydroxyphenyl-γ-valerolactone (M7)-sulfate; (epi)catechin-sulfate, methyl-(epi)catechin-

sulfates, and (epi)gallocatechin-sulfate, as quercetin-sulfate; dihydroxyphenyl-valerolactone-

glucuronide and dihydroxyphenyl-valerolactone-sulfate-glucuronide as 3’-hydroxyphenyl-γ-

valerolactone (M7)-glucuronide; and (epi)catechin-glucuronide, methyl-(epi)catechin-

glucuronide, and (epi)catechin-sulfate-glucuronide as quercetin-glucuronide. Urinary 

excretion of selected metabolites was adjusted for creatinine levels. 

The concentration of bile acids in intestinal mucosa samples was analyzed by using an 

UPLC-H I-Class (Waters, UK) coupled to a Xevo-G2 QTof mass spectrometer (Waters, UK). 

Electrospray ionization was performed in the negative ionization mode. Chromatographic 
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separation was performed on a BEH C18 column (2.1 x 100 mm, 1.7 µm). The mobile phase 

consisted of water (Eluent A) and acetonitrile (Eluent B) both containing 0.1 % formic acid. 

Analytes were separated by a linear gradient elution. The injection volume was 2 µL and the 

column was maintained at 40 °C. Detection of the bile acids and their glycine and taurine 

conjugates was performed by exact mass (+/- 0.01 Da). All standards as well as the 

deuterated internal standard (IS) substance (d4-chenodeoxycholic acid) were purchased 

from Steraloids (Newport, USA). 

 

2.7 Statistics 

The impact of treatment was compared by one-way ANOVA followed by protected multiple 

comparison tests (i.e., Bonferroni and Tukey-Kramer) or Kruskal-Wallis followed by Dunn’s 

Multiple Comparison Test. Histology data and components of the NAS (steatosis amount, 

lobular inflammation, and ballooning) were analysed using a Mann-Whitney U test. For the 

IPGTT data, a repeated measures ANOVA was conducted with time and dietary groups as 

independent variables. One-way ANOVA with Duncan’s post hoc test was applied to 

compare values relating to tissue accumulation or urinary excretion of flavan-3-ol 

metabolites. When flavan-3-ol metabolites were detected only for the HF/HFr + FLAV and 

HF/HFr + FLAVn-3 groups, a t-test instead of one-way ANOVA was applied. For all tests, the 

bilateral alpha risk was set as α = 0.05. Principal component analysis (PCA) with varimax 

was also performed. The statistical analysis was conducted using the SPSS package 

(version 16.0; SPSS Inc., Chicago, IL, USA). 

 

3. RESULTS 

3.1 Flavan-3-ols and n-3 fatty acids supplemented diets protect the liver from 

developing the biochemical and histological features of NASH 
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Following 16 weeks of HF/HFr feeding, mice developed steatosis and hepatocyte ballooning, 

while livers from control-fed mice showed normal histological hepatocyte architecture and no 

evidence of steatosis (Figure 1A). Mice fed with FLAV and n-3 displayed a reduction in the 

lipid droplet size and hepatocyte damage induced by HF/HFr. Upon conversion of the 

histological images into semi-quantitative data, relative to HF/HFr, FLAVn-3 supplementation 

significantly decreased both steatosis and hepatocyte ballooning (Table 1). Reduction in 

hepatocyte ballooning was also observed in presence of n-3 also, but to a lesser extent. 

Fatty liver development and liver function was also assessed by liver TAG and serum ALT 

and AST. Consistent with the histology, HF/HFr was associated with significant increases in 

all three markers (Figure 1B-D), which were ameliorated by FLAV and n-3 supplementation. 

 
3.2 The weight gain associated with HF/HFr feeding is in part negated by flavan-3-ol 

supplementation  

At 16 weeks, body weight gain and liver weight were 50% and 33% higher respectively in the 

HF/HFr mice compared to the control animals (Figure 2A and Figure 2B). FLAV and 

FLAVn-3 supplementation reduced weight gain by 28-30% with no differences in body 

weight associated with n-3 supplementation. No difference in cumulative food intake 

between groups was evident (average 2.55 ± 0.08 g/d, data not shown). A 4-fold increase in 

inguinal adipose tissue mass (Figure 2C) along with a 10-fold higher plasma leptin levels 

(Figure 2D) were also observed in mice fed a HF/HFr relative to control diet. Such increased 

levels were partly attenuated by FLAV and FLAVn-3 feeding (Figure 2C-D). 

 

3.3 Flavan-3-ol but not n-3 maintains insulin sensitivity in fed mice challenged with a 

HF/HFr diet 

HF/HFr diet raised fasted blood glucose, plasma insulin and HOMA-IR relative to control, 

indicative of decreased insulin sensitivity (Figure 3A-C). In the IPGTT, HF/HFr feeding 

raised glucose concentrations at 60 and 120 min relative to control (Figure 3A). For insulin, 

2- and 3-fold higher concentrations were observed at 15 min and 120 min respectively in the 
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HF/HFr group (Figure 3B). At 120 min, FLAV and FLAVn-3 reduced insulin levels by 35% 

indicative of a FLAV associated amelioration of the loss of insulin sensitivity induced by 

HF/HFr. Additionally, only the FLAVn-3 supplementation decreased HOMA-IR. (Figure 3C). 

 

3.4 Supplementation with n-3 fatty acids and flavan-3-ols modulates the expression of 

genes involved in hepatic lipid accumulation and fibrosis. 

HF/HFr upregulated genes associated with hepatic lipid accumulation with an almost 2-fold 

increase in the expression of the lipogenic genes, acyl-CoA carboxylase (Acaca) and fatty 

acid synthase (Fasn). Likewise, 1.5-6 fold increases in the fatty acid/lipoprotein receptors, 

fatty acid binding protein 4 (Fabp4) and very-low-density-lipoprotein receptor (Vldlr) were 

evident, along with an up-regulation of sterol regulatory element-binding protein 1c (Srebf1), 

the main transcription factor modulating lipogenesis (Acaca and Fasn). n-3 (+/- FLAV) 

decreased Acaca, Fasn and Srebf1 expression with FLAV (+/- n-3) down-regulating Fabp4 

and the Vldlr expression. Although no impact of HF/HFr feeding on fibrosis-related genes 

was observed, FLAV and n-3 down-regulated collagen 1A1 (Col1a1), Col1a2, matrix 

metalloproteinase (Mmp) 2, and tissue inhibitor of MMP 2 (Timp2), with an increase in Timp3 

evident following combined FLAVn-3 exposure (Figure 4 and Supplementary Table S5). 

 

3.5 Flavan-3-ols but not n-3 fatty acids alter bile acid metabolism leading to 

upregulation of CYP7A1 in mice fed a HF/HFr diet 

HF/HFr diet had a negligible impact on total illeal bile acids (Figure 5A), with a modest 

increase in the proportion in the conjugated form (Figure 5B). Supplementing HF/HFr with 

FLAV alone or in combination with n-3 not only enhanced the percentage of conjugated 

forms (Figure 5B) but also reduced the content of hyodeoxycholic acid (HDCA) (Figure 5C), 

decreased the ratio HDCA to muricholic acids (MCA) (Figure 5D), increased the level of 

FXR-agonist bile acids and tended to increase the content of FXR-antagonist species 

(Figure 4E). The magnitude of these widespread effects were most pronounced for FLAVn-
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3. Although statistically not significant, it is important to note that the balance of FXR bile 

acid activators and inhibitors was about 40% more antagonistic in mice fed FLAV, n-3, and 

FLAVn-3 than in their counterparts offered HF/HFr and control diet. Compared to HF/HFr, all 

treatments decreased FXR signalling as revealed by a downregulation of Shp mRNA in the 

ileum and liver (Figure 6A, D). The greatest inhibitory action was evident with FLAV, which 

is consistent with the response to intervention of other FXR target genes in the liver (Cyp7a1 

and Cyp8b1, Figure 6B, C) and the intestine (Tgr5 and Gcg, Figure 6E, F) and Fgf15 

(Supplementary Figure S1).  

 

3.6 Supplementation with n-3 fatty acids and flavan-3-ols results in significant 

increases in hepatic tissue EPA, DHA and flavan-3-ol metabolite concentrations 

In the n-3 groups a 1.7 and 4.0 absolute increase in percentage EPA and DHA was evident 

relative to the HF/HFr, with no impact of FLAV on fatty acid status (Supplementary Table 

S6). Furthermore, n-3 feeding increased tissue lipid hydroperoxide (LPO) levels by 

approximately 2-fold relative to the other groups. 

Potential flavan-3-ols metabolites were monitored using LC-MS methods with five microbial 

FLAV degradation products [25] detected in the liver samples (Supplementary Table S7 

and S8). In particular, a significant increase in hydroxyphenylvalerolactones, originating from 

the C-ring-opening of flavan-3-ols by the colonic microflora followed by further lactonization, 

was observed. In addition, urine samples were analysed and 37 compounds identified, 

including phase II and colonic metabolites which varied significantly between groups 

(Supplementary Table S9). n-3 fatty acid consumption modified the metabolism of flavan-3-

ols, enhancing the excretion of phase II conjugates of flavan-3-ol monomers and 

hydroxyphenylvalerolactones while decreasing the excretion of phenolic acid conjugates 

which is suggestive of enhanced FLAV absorption (Supplementary Table S9, Figure S2 

and Figure S3). 
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4. Discussion 

Liver disease is the third most common cause of premature death in the UK [26]. Due to the 

increased incidence of obesity, NAFLD is now more prevalent than alcohol-induced liver 

disease [2] with 67% of overweight and 94% of obese individuals presenting this condition 

[27]. The HF/HFr regime was selected as a physiologically relevant model for human NAFLD 

development and resulted in steatosis and hepatocyte ballooning indicative of early NASH. 

In this study we demonstrate that combined supplementation with FLAVn-3 prevented 

steatosis and hepatocyte ballooning, lowered weight and adipose tissue gain and improved 

insulin sensitivity. Our findings are similar to previous data demonstrating that 8% cocoa 

powder for 10 weeks significantly reduced the rate of body weight gain, as well as final body 

weight and retroperitoneal WAT weight compared to HFD-fed controls [28]. Such effects 

may be related to increased faecal fat excretion [29], with cocoa extracts and their 

component polyphenols shown to inhibit the activity of pancreatic lipase and secreted 

phospholipase A2, which may reduce dietary fat absorption [30]. Individual feeding of FLAV 

and n-3 identified numerous physiological and molecular mechanisms which are likely to 

have acted synergistically to prevent NASH in the FLAVn-3 group. Previous studies have 

reported the hypoglycemic and insulin sensitising effects of cocoa polyphenols. For example, 

a proanthocyanidin-rich cocoa liquor extract suppressed a HFD-induced hyperglycemia 

through the activation of AMP-activated protein kinase α, and the translocation of glucose 

transporter 4 in mice [20]. In addition, short-term administration of dark chocolate improved 

insulin resistance in terms of improved HOMA-IR and quantitative insulin sensitivity check 

index (QUICKI) in healthy subjects [31]. Whilst cocoa polyphenols may play a large part in 

the observed effects, emerging evidence is also suggestive that caffeine contribute to the 

weight loss [32] although its intake could explain some but not all of the diabetes-risk 

reduction and weight change in humans [33]. In this study, FLAV ameliorated the HF/HFr 

induced obesity, the aetiology of which is likely related to changes in bile acid metabolism 

[34]. Whilst most bile acids enter the gut conjugated to taurine or glycine, these are 
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deamidated by microbial bile salt hydrolases (BSH) in the distal small intestine and, if not 

absorbed and transported back to the liver, are further metabolized by gut microbiota [35]. 

Recent studies in obese mice showed that partial inhibition of BSH by antibiotics [36] results 

in the intestinal accumulation of conjugated bile acids, and in particular of the FXR 

antagonists tauro-muricholic acid (T-MCA) [37] and tauro-ursodeoxycholic acid (TUDCA) 

[38], therefore reducing steatosis and body weight gain partly via repressed expression of 

hepatic Srebf1 [36]. Recent evidence suggest that elevated FXR antagonistic bile acids 

along with FXR antagonist that specifically inhibit intestine FXR, play a role in the treatment 

of NAFLD [39]. The role of intestinal FXR in body weight reduction, insulin resistance and 

fatty livers was firmly established in mice lacking FXR that are metabolicaly resistant to HFD-

induced metabolic disease [40]. Furthermore, liver-specific Shp deletion, a target of FXR, 

prevented hepatic steatosis in animal fed a HFD and Western diet whilst the global double 

knockdown of Shp and Fxr protected against weight gain, glucose intolerance and hepatic 

steatosis [41]. Accordingly, our results indicate that FLAV, and in particular when combined 

with n-3, partially suppressed bile salt deconjugation and the subsequent microbial 

conversion of MCA into HDCA resulting in an increase of FXR bile acids antagonist which 

favoured its signalling inhibition in the intestine and liver. More precisely, we demonstrate 

that the FLAV-triggered repression of hepatic Shp translated into enhanced expression of 

Cyp7a1, the rate-limiting enzyme in the bile acid synthesis pathway, whose overexpression 

in the liver of mice counteracted diet-induced obesity, steatosis, and insulin resistance [42]. 

In support of this statement, the finding that FLAV suppressed the expression of Tgr5 and 

Gcg mRNA levels in the small intestine, suggests that the secretion of glucagon-like peptide-

1 via intestinal Tgr5 did not account for the metabolic improvements caused by FLAV. 

Additionally, FLAV resulted in lower fasting insulin and insulin concentrations following the 

IPGTT, which along with the increased expression of Cyp7a1 is thought to underlie the 

impact on steatosis and hepatocyte ballooning evident following the FLAVn-3 treatment.  

Given the collinearity between the FLAV induced changes in weight and insulin responses, 

the weight independent influence of FLAV on insulin sensitivity and NASH development 
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cannot be established. The weight gain associated with HF/HFr was accompanied by 

elevated plasma leptin. Leptin is secreted in proportion to white adipose tissue mass and is 

essential in the regulation of energy homeostasis, glucose and lipid metabolism functions 

[43]. The role of leptin in the progression of NAFLD remains unknown, but clinical data 

summarised in a meta-analysis (evaluating 33 studies and 2612 individuals), reported that 

circulatory leptin levels were associated with the severity of NAFLD [44]. Obesity is 

commonly associated with hyperleptinemia that can progress to leptin resistance with 

attenuated hypothalamic leptin signalling which fails to reduce the excess of adiposity [45, 

46]. Here we showed that Flavn-3 reduced the weight gain induced by the HF/HFr diet, and 

was associated with lower circulating leptin levels, which may suggest improved leptin 

signalling. In agreement with this observation. In agreement with this observation and our 

FLAV induced lowering of leptin concentrations, Park et al. [47] recently reported that a 

flavonoid-rich grape extract reduced leptin, which together with our results suggest that 

altered leptin metabolism may partly underlie the FLAV induced reduction in NAFLD. These 

novel findings expand the state-of-the-art regarding the mechanism underlying the benefits 

of flavonoids in NAFLD [11]. 

De novo lipogenesis has been approximated to be 5-fold greater in NAFLD compared to 

normal individuals [48]. Our gene expression profiles indicate that reduced lipogenesis due 

to lower Acaca and Fasn expression along with their regulatory transcription factor Srebf1 

underlies the observed n-3 induced reduced steatosis, which is consistent with previous 

observations [49, 50]. A significant reduction in Nr1h3, the gene encoding the liver X 

receptor alpha (Lxra), a Sreb1f upstream regulator, induced by n-3 supports this observation 

(See Supplementary Table S4). No significant impact of treatment on carnitine 

palmitoyltransferase I (Cpt1) was evident, indicating that increased mitochondrial fatty acid 

oxidation did not significantly contribute to the reduced steatosis. Increased fatty acid flux 

from adipose tissue and uptake of fatty acids as lipoproteins or complexed to albumin also 

contributes to hepatic TAG load in NAFLD. In particular, the lipoprotein and fatty acid 

receptors Vldlr and Fabp4 have been implicated in NAFLD progression [51]. The observed 
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reduced expression of these receptors following both n-3 and FLAV supplementation is also 

likely to significantly contribute to the reduced steatosis and TAG concentration observed. Of 

interest is that because FLAV, but not n-3, failed to reduce the expression of Srebf1, a target 

gene of Fxr that controls fatty acid synthesis [52], such an explanation could also account for 

the synergistic effect of combining FLAV with n-3 in preventing NALFD development.  

Finally, although not evident in the liver, an n-3 induced increase in the apparent 

bioavailability (based on higher urinary excretion) of select flavan-3-ol metabolites was 

observed which could contribute to the greater efficacy of FLAVn-3 relative to FLAV alone. 

This finding is consistent with Giunta et al. [53] who observed an n-3 induced increase in 

blood and brain green tea flavonoid concentrations in mice.  

 
In conclusion combined supplementation with FLAVn-3 is highly effective in preventing 

NAFLD. The additive anti-lipogenic (n-3 effect) and insulin sensitising actions associated 

with reduced weight gain (FLAV effect) is likely to be responsible for the greater effects 

relative to either dietary component fed in isolation (Figure 6). The ability of this combined 

dietary approach to reverse steatosis or the more pathological NASH and fibrosis stages of 

the disease remains to be established and should be explored in clinical trials. 
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Figure legends 

Figure 1. Hepatic biochemical and histological evidence of steatohepatitis in the liver 

of mice fed with a high fat/high fructose diet and the amelioration induced by the 

individual and combined impact of 16 weeks intervention with flavan-3-ols and n-3 

fatty acids. A) Representative H&E-stained images of liver from mice fed with the different 

diets under 20x magnification. B) Liver TAG; C) Serum ALT; D) Serum AST. Values are 

expressed as mean ± SEM. n ≥ 7 (per group). Different superscripts indicate statistical 

differences between diet groups, **p < 0.01; ***p < 0.001; vs the control group. NS, not 

significant 

 
Figure 2. Effect of flavan-3-ols and n-3 fatty acids on body weight gain, liver and 

adipose tissue weight and leptin levels in mice fed a high fat/high fructose diet. (A) 

Body weight gain (0-16 weeks). (B) Liver weight (C) Inguinal adipose tissue weight (D) 

Plasma leptin (16 weeks). Values are expressed as mean ± SEM. n ≥ 7 (per group). 

Different superscripts indicate statistical differences between diet groups. 

Figure 3. Effect of flavan-3-ols and n-3 fatty acids on insulin and glucose response in 

mice fed a high fat/high fructose diet. (A) Glucose and (B) insulin concentrations during 

the intraperitoneal glucose tolerance test (15 weeks). (C) Homeostatic model assessment for 

insulin resistance (HOMA-IR) (15 weeks). Values are expressed as mean ± SEM. n ≥ 7 (per 

group). Different superscripts indicate statistical differences between diet groups, *p < 0.05; 

**p < 0.01; ***p < 0.001; vs the control group. # depicts statistical significance (p < 0.05) 

when compared to the control group (fasted state). 

Figure 4. Taqman Low Density Array (TLDA) and real time quantitative PCR (qRT-PCR) 

analysis of liver samples. Impact of the intervention treatments on the gene expression 

modulation of A) Fatty acid uptake, B) Lipogenesis and C) Fibrosis. Values are expressed as 

mean ± SEM. n ≥ 7 (per group). Different superscripts indicate statistical differences 

between diet groups. 
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Figure 5. Flavan-3-ols and n-3 fatty acids alter intestinal bile acid metabolism and 

signature in mice fed a high fat/high fructose diet. Concentration of (A) total bile acids; 

(B) proportion of conjugated bile acids; (C) content of hyodeoxycholic acid (HDCA); (D) ratio 

HDCA to tauro-muricholic acids (αMCA + βMCA); and (E) concentration of FXR bile acid 

activators or inhibitors in the small intestine. Values are least square means ± SEM, n = 7-8 

per treatment. Different superscripts indicate statistical differences between diet groups, P < 

0.001. CA, cholic acid; CDCA, chenodeoxycholic acid; DCA, deoxycholic acid; T-UDCA, 

tauro ursodeoxycholic acid.  

 
Figure 6. Flavan-3-ols and n-3 fatty acids inhibit FXR signalling in the intestine and 

liver of mice fed a high fat/high fructose diet. Gene expression of FXR target genes in 

the liver (A-C) and illeum (D-F). Values are expressed as mean ± SEM. n ≥ 7 (per group). 

Different superscripts indicate statistical differences between diet groups, P < 0.05. Shp, 

small herodimer partner; Cyp, cytochrome P450; Tgr5 (aka Gpbar1, G protein-coupled bile 

acid receptor 1); Gcg, glucagon. 

 

Figure 7. Proposed mechanisms underlying the effect of flavan-3-ols (FLAV), n-3 fatty 

acids (n-3) and their combination (FLAVn-3) in NAFLD prevention. a) n-3 increases the 

bioavailability of FLAV in the intestine. b) FLAV increase the pool of Fxr bile acids (BA) 

antagonists which reduce its downstream effector (SHP) and in turn upregulates Cyp7a1. c) 

FLAV and/or its metabolites reduce the higher insulin and leptin plasma levels and d) 

overweight induced by HF/HFr diet. e) n-3 supresses TAG accumulation in the liver by 

downregulating de novo lipogenesis (DNL). f) FLAVn-3 reduces the fatty acids efflux into the 

liver through downregulation of lipoprotein (VLDLr) and fatty acids receptors (FABP4). g) 

FLAVn-3 downregulates genes involved in fibrosis (FIBR).   
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Table 1. Histological changes following 16 weeks high fat high fructose (HF/HFr) diet 

supplemented or not with flavanols (FLAV), long-chain n-3 PUFAs (n-3) or a combination of 

both (FLAVn-3). Components of the NAS (steatosis amount, lobular inflammation, and 

ballooning) mean scores are expressed as mean ± standard deviation and significance was 

obtained using the Mann-Whitney U test for P<0.05.  

 

 Control HF/HFr HF/HFr 

   + Flav + n-3 + FLAVn-3 

Steatosis      

Grade 0 (< 5 %) 7 3 7 8 9 

Grade 1 (5-33 %) 0 3 2 2 1 

Grade 2 (34-66 %) 0 4 0 0 0 

Grade 3 (>66 %) 0 0 0 0 0 

Mean Score  0.0 ± 0.0b 1.1 ± 0.8a  0.2 ± 0.4ab 0.2 ± 0.2ab 0.1 ± 0.3b 

      

Lobular Inflammation      

Grade 0 (none) 5 1 5 6 8 

Grade 1 (<2) 2 9 4 4 2 

Grade 2 (2-4) 0 0 0 0 0 

Grade 3 (>4) 0 0 0 0 0 

Mean Score 0.2 ± 0.4 0.6 ± 0.3 0.3 ± 0.4 0.3 ± 0.3 0.3 ± 0.5 

      

Hepatocyte Ballooning      

Grade 0 (none) 7 1 5 8 10 

Grade 1 (few) 0 2 3 2 0 

Grade 2 (many) 0 7 1 0 0 

Mean Score 0.0 ± 0.0b 1.6 ± 0.7a 0.6 ± 0.7ab 0.2 ± 0.2b 0.0 ± 0.0b 

      

NAS Score (0-8) 0.2 ± 0.2b 3.3 ± 0.5a 1.1 ± 0.2b 0.7 ± 0.1b 0.4 ± 0.2b 
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Highlights 

 Although highly prevalent, no treatment exists for NAFLD 

 Flavonoids (FLAV) and n-3 fatty acids are emerging as dietary strategies 

 FLAV and n-3 reduced steatosis, body weight gain and insulin resistance in mice 

 FLAV ameliorated bile acid metabolism and n-3 downregulated lipogenic genes 

 FLAVn-3 should be tested for efficacy in human NAFLD 
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