105 research outputs found

    Convective motions and net circular polarization in sunspot penumbrae

    Full text link
    We have employed a penumbral model, that includes the Evershed flow and convective motions inside penumbral filaments, to reproduce the azimuthal variation of the net circular polarization (NCP) in sunspot penumbrae at different heliocentric angles for two different spectral lines. The theoretical net circular polarization fits the observations as satisfactorily as penumbral models based on flux-tubes. The reason for this is that the effect of convective motions on the NCP is very small compared to the effect of the Evershed flow. In addition, the NCP generated by convective upflows cancels out the NCP generated by the downflows. We have also found that, in order to fit the observed NCP, the strength of the magnetic field inside penumbral filaments must be very close to 1000 G. In particular, field-free or weak-field filaments fail to reproduce both the correct sign of the net circular polarization, as well as its dependence on the azimuthal and heliocentric angles.Comment: Accepted for publication in the Astrophysical Journal. 10 pages, 7 figures (3 in color). Uses emulatedap

    Applicability of Milne-Eddington inversions to high spatial resolution observations of the quiet Sun

    Full text link
    The physical conditions of the solar photosphere change on very small spatial scales both horizontally and vertically. Such a complexity may pose a serious obstacle to the accurate determination of solar magnetic fields. We examine the applicability of Milne-Eddington (ME) inversions to high spatial resolution observations of the quiet Sun. Our aim is to understand the connection between the ME inferences and the actual stratifications of the atmospheric parameters. We use magnetoconvection simulations of the solar surface to synthesize asymmetric Stokes profiles such as those observed in the quiet Sun. We then invert the profiles with the ME approximation. We perform an empirical analysis of the heights of formation of ME measurements and analyze the uncertainties brought about by the ME approximation. We also investigate the quality of the fits and their relationship with the model stratifications. The atmospheric parameters derived from ME inversions of high-spatial resolution profiles are reasonably accurate and can be used for statistical analyses of solar magnetic fields, even if the fit is not always good. We also show that the ME inferences cannot be assigned to a specific atmospheric layer: different parameters sample different ranges of optical depths, and even the same parameter may trace different layers depending on the physical conditions of the atmosphere. Despite this variability, ME inversions tend to probe deeper layers in granules as compared with intergranular lanes.Comment: Accepted for publication in Astronomy and Astrophysic

    Análisis comparativo de la calidad percibida por espectadores en deportes de combate

    Get PDF
    The interest in knowing the user's perceptions regarding the quality and value of the service has been transferred to the sports events. Knowing which are the determinant elements for the general satisfaction of the spectator, will cause to the organizations a greater loyalty and improvement in its sport projects. This study analyzes, through a questionnaire, the different dimensions from the quality perceived, services quality, competitions elements and futures intentions in the prediction of the general satisfaction of the spectator in Taekwondo and Wrestling Spanish Championships. The results indicated the quality dimension was the worst valued for the spectators in both sports, being the results quality the low punctuation dimension. However, the future intentions has got the best valued dimension for the spectators, there are no exist more differences between the both championships. These results would be relevant for managers in charge of sport events in order to plan strategies dedicated to services improvement.El interés por conocer las percepciones del espectador respecto a la calidad y el valor del servicio, se ha trasladado a los eventos deportivos. Conocer cuáles son los elementos determinantes para alcanzar la satisfacción general del espectador, propiciará a los organizadores una mayor lealtad y mejora en la planificación de próximos eventos. Este estudio analiza, a través de un cuestionario, las  distintas dimensiones de calidad percibida, que presenta un evento deportivo de combate, calidad de servicio global, satisfacción general, elementos de la competición e intenciones futuras, según la percepción del espectador en los Campeonatos de España absolutos de las modalidades deportivas de Taekwondo y Lucha Olímpica. La dimensión de calidad percibida fue la peor valorada de forma global por los espectadores de los dos campeonatos, siendo la calidad de resultado la menos puntuada. Sin embargo, las intenciones futuras fueron el factor más valorado, existiendo pequeñas diferencias entre ambos eventos. Estos resultados son relevantes para los gestores de eventos deportivos para planificar estrategas para la mejora del servicio

    Two-dimensional solar spectropolarimetry with the KIS/IAA Visible Imaging Polarimeter

    Full text link
    Spectropolarimetry at high spatial and spectral resolution is a basic tool to characterize the magnetic properties of the solar atmosphere. We introduce the KIS/IAA Visible Imaging Polarimeter (VIP), a new post-focus instrument that upgrades the TESOS spectrometer at the German VTT into a full vector polarimeter. VIP is a collaboration between the KIS and the IAA. We describe the optical setup of VIP, the data acquisition procedure, and the calibration of the spectropolarimetric measurements. We show examples of data taken between 2005 and 2008 to illustrate the potential of the instrument. VIP is capable of measuring the four Stokes profiles of spectral lines in the range from 420 to 700 nm with a spatial resolution better than 0.5". Lines can be sampled at 40 wavelength positions in 60 s, achieving a noise level of about 2 x 10E-3 with exposure times of 300 ms and pixel sizes of 0.17" x 0.17" (2 x 2 binning). The polarization modulation is stable over periods of a few days, ensuring high polarimetric accuracy. The excellent spectral resolution of TESOS allows the use of sophisticated data analysis techniques such as Stokes inversions. One of the first scientific results of VIP presented here is that the ribbon-like magnetic structures of the network are associated with a distinct pattern of net circular polarization away from disk center. VIP performs spectropolarimetric measurements of solar magnetic fields at a spatial resolution that is only slightly worse than that of the Hinode spectropolarimeter, while providing a 2D field field of view and the possibility to observe up to four spectral regions sequentially with high cadence. VIP can be used as a stand-alone instrument or in combination with other spectropolarimeters and imaging systems of the VTT for extended wavelength coverage.Comment: 10 pages, 8 figures, accepted by Astronomy and Astrophysics v2: figures updated with improved qualit

    VFISV: Very Fast Inversion of the Stokes Vector for the Helioseismic and Magnetic Imager

    Full text link
    In this paper we describe in detail the implementation and main properties of a new inversion code for the polarized radiative transfer equation (VFISV: Very Fast inversion of the Stokes vector). VFISV will routinely analyze pipeline data from the Helioseismic and Magnetic Imager (HMI) on-board of the Solar Dynamics Observatory (SDO). It will provide full-disk maps (4096×\times4096 pixels) of the magnetic field vector on the Solar Photosphere every 10 minutes. For this reason VFISV is optimized to achieve an inversion speed that will allow it to invert 16 million pixels every 10 minutes with a modest number (approx. 50) of CPUs. Here we focus on describing a number of important details, simplifications and tweaks that have allowed us to significantly speed up the inversion process. We also give details on tests performed with data from the spectropolarimeter on-board of the Hinode spacecraft.Comment: 23 pages, 9 figures (2 color). Submitted for publication to Solar Physic

    Modelling and Interpreting The Effects of Spatial Resolution on Solar Magnetic Field Maps

    Full text link
    Different methods for simulating the effects of spatial resolution on magnetic field maps are compared, including those commonly used for inter-instrument comparisons. The investigation first uses synthetic data, and the results are confirmed with {\it Hinode}/SpectroPolarimeter data. Four methods are examined, one which manipulates the Stokes spectra to simulate spatial-resolution degradation, and three "post-facto" methods where the magnetic field maps are manipulated directly. Throughout, statistical comparisons of the degraded maps with the originals serve to quantify the outcomes. Overall, we find that areas with inferred magnetic fill fractions close to unity may be insensitive to optical spatial resolution; areas of sub-unity fill fractions are very sensitive. Trends with worsening spatial resolution can include increased average field strength, lower total flux, and a field vector oriented closer to the line of sight. Further-derived quantities such as vertical current density show variations even in areas of high average magnetic fill-fraction. In short, unresolved maps fail to represent the distribution of the underlying unresolved fields, and the "post-facto" methods generally do not reproduce the effects of a smaller telescope aperture. It is argued that selecting a method in order to reconcile disparate spatial resolution effects should depend on the goal, as one method may better preserve the field distribution, while another can reproduce spatial resolution degradation. The results presented should help direct future inter-instrument comparisons.Comment: Accepted for publication in Solar Physics. The final publication (including full-resolution figures) will be available at http://www.springerlink.co

    The Imaging Magnetograph eXperiment (IMaX) for the Sunrise balloon-borne solar observatory

    Get PDF
    The Imaging Magnetograph eXperiment (IMaX) is a spectropolarimeter built by four institutions in Spain that flew on board the Sunrise balloon-borne telesocope in June 2009 for almost six days over the Arctic Circle. As a polarimeter IMaX uses fast polarization modulation (based on the use of two liquid crystal retarders), real-time image accumulation, and dual beam polarimetry to reach polarization sensitivities of 0.1%. As a spectrograph, the instrument uses a LiNbO3 etalon in double pass and a narrow band pre-filter to achieve a spectral resolution of 85 mAA. IMaX uses the high Zeeman sensitive line of Fe I at 5250.2 AA and observes all four Stokes parameters at various points inside the spectral line. This allows vector magnetograms, Dopplergrams, and intensity frames to be produced that, after reconstruction, reach spatial resolutions in the 0.15-0.18 arcsec range over a 50x50 arcsec FOV. Time cadences vary between ten and 33 seconds, although the shortest one only includes longitudinal polarimetry. The spectral line is sampled in various ways depending on the applied observing mode, from just two points inside the line to 11 of them. All observing modes include one extra wavelength point in the nearby continuum. Gauss equivalent sensitivities are four Gauss for longitudinal fields and 80 Gauss for transverse fields per wavelength sample. The LOS velocities are estimated with statistical errors of the order of 5-40 m/s. The design, calibration and integration phases of the instrument, together with the implemented data reduction scheme are described in some detail.Comment: 17 figure

    Congreso online: nueva herramienta para fomentar el aprendizaje

    Get PDF
    Los congresos científicos son una herramienta valiosa en el aprendizaje para estudiantes de tercer ciclo. Sin embargo, no son aprovechados al máximo con esta finalidad, puesto que las intervenciones por parte de los estudiantes, en cuanto a plantear cuestiones se refiere, son prácticamente nulas. Con el objetivo de fomentar la participación de los estudiantes de tercer ciclo en los congresos científicos, se presenta una propuesta de congreso online para estudiantes de doctorado en el programa interuniversitario `Electroquímica. Ciencia y Tecnología`, empleando la herramienta Moodle. Este congreso consiste en dar a conocer, de forma visible y con formato de pósters, comunicaciones científicas de los estudiantes, quienes deben hacer preguntas acerca de las mismas y responder a las realizadas sobre su contribución. Además, y siempre con la finalidad de fomentar la participación en forma de preguntas y discusiones científicas, se otorgarán premios tales como al estudiante más participativo y al mejor póster, para lo que se evaluará la defensa del póster por parte del estudiante
    corecore