1,694 research outputs found

    Updating Turbomachinery Aerodynamics Teaching On an Undergraduate Course Using 3D Design Tools

    Get PDF
    This paper outlines the update of a turbomachinery course to cover 3D aerodynamics using a Reynolds Averaged-Navier Stokes solver. Prior to the activities outlined in this paper the course was taught in a conventional way with a series of lectures and a timed, written, open book examination in a formal exam setting. Students were equipped with a calculator and set of notes including correlations from Howell and Soderberg. This limited the depth of any aerodynamic problem they could get through and so they were restricted to simple design or analysis exercises.The genesis of the course update was the release in 2017 of “MULTALL OPEN” [1] a freely available turbomachinery design system and this was adopted as the course software - although other software choices were considered.Students now produce two turbomachinery designs during the course. These are both based on the J85 turbojet - largely to keep cycle calculations to a minimum but it was also important to ensure that students recognise that they were completing a real engineering task. The first task was a 3D aerodynamic design of multi-stage turbine which includes compressible flow, tip clearance and stacking techniques such as lean or sweep. The second task was a midspan (2D) compressor design. Assessment was by means of a short report where the best students report on their design choices, provide critical analysis of the design using appropriate post-processing techniques and compare their designs to the state of the art in the wider literature.As well as describing the successes and challenges of the update to 3D design methods the paper provides some guidance for educators thinking about adopting a similar approach

    Financial health indicators: an analysis of financial statement information to determine the financial health of DoD contractors

    Get PDF
    MBA Professional ReportPrior to awarding a contract, government contracting officers must be able to determine the financial health of prospective contractors. In fact, according to the Federal Acquisition Regulation (FAR) 9.104- 1(a), the very first general requirement to being considered a responsible prospective contractor is to show adequate financial resources to perform the contract or the ability to obtain financing. The purpose of this research is to identify a financial assessment framework that could assist DOD contracting officers with determining the financial health of potential DOD contractors. This research study may help DOD contracting officers determine the financial health of potential contractors prior to awarding a contract. The findings of this study provide a recommended framework that a contracting officer could follow in order to assess the financial health of a prospective contractor. The framework includes a ratio analysis using selected ratios compiled by this study, as well as a comparative analysis using industry average driven data. The framework also incorporates horizontal and vertical analyses, as well as bankruptcy and fraud analyses. The financial assessment framework created in this study is a comprehensive financial health assessment tool that can be utilized by DOD contracting officers.http://archive.org/details/financialhealthi1094551703Lieutenant Commander, United States NavyLieutenant, United States NavyLieutenant, United States NavyApproved for public release; distribution is unlimited

    A Comparison of Real Time Thermal Rating Systems in the U.S. and the UK

    Get PDF
    Real-Time Thermal Rating is a smart grid technology that allows the rating of electrical conductors to be increased based on local weather conditions. Overhead lines are conventionally given a conservative, constant seasonal rating based on seasonal and regional worst case scenarios rather than actual, say, local hourly weather predictions. This paper provides a report of two pioneering schemes—one in the United States of America and one in the United Kingdom—in which Real-Time Thermal Ratings have been applied. Thereby, we demonstrate that observing the local weather conditions in real time leads to additional capacity and safer operation. Secondly, we critically compare both approaches and discuss their limitations. In doing so, we arrive at novel insights which will inform and improve future Real-Time Thermal Rating projects

    A Klebsiella pneumoniae antibiotic resistance mechanism that subdues host defences and promotes virulence

    Get PDF
    Klebsiella pneumoniae is an important cause of multidrug-resistant infections worldwide. Recent studies highlight the emergence of multidrug-resistant K.\ua0pneumoniae strains which show resistance to colistin, a last-line antibiotic, arising from mutational inactivation of the mgrB regulatory gene. However, the precise molecular resistance mechanisms of mgrB-associated colistin resistance and its impact on virulence remain unclear. Here, we constructed an mgrB gene K.\ua0pneumoniae mutant and performed characterisation of its lipid A structure, polymyxin and antimicrobial peptide resistance, virulence and inflammatory responses upon infection. Our data reveal that mgrB mutation induces PhoPQ-governed lipid A remodelling which confers not only resistance to polymyxins, but also enhances K. pneumoniae virulence by decreasing antimicrobial peptide susceptibility and attenuating early host defence response activation. Overall, our findings have important implications for patient management and antimicrobial stewardship, while also stressing antibiotic resistance development is not inexorably linked with subdued bacterial fitness and virulence

    First LIGO search for gravitational wave bursts from cosmic (super)strings

    Get PDF
    We report on a matched-filter search for gravitational wave bursts from cosmic string cusps using LIGO data from the fourth science run (S4) which took place in February and March 2005. No gravitational waves were detected in 14.9 days of data from times when all three LIGO detectors were operating. We interpret the result in terms of a frequentist upper limit on the rate of gravitational wave bursts and use the limits on the rate to constrain the parameter space (string tension, reconnection probability, and loop sizes) of cosmic string models.Comment: 11 pages, 3 figures. Replaced with version submitted to PR

    Astrophysically Triggered Searches for Gravitational Waves: Status and Prospects

    Get PDF
    In gravitational-wave detection, special emphasis is put onto searches that focus on cosmic events detected by other types of astrophysical observatories. The astrophysical triggers, e.g. from gamma-ray and X-ray satellites, optical telescopes and neutrino observatories, provide a trigger time for analyzing gravitational wave data coincident with the event. In certain cases the expected frequency range, source energetics, directional and progenitor information is also available. Beyond allowing the recognition of gravitational waveforms with amplitudes closer to the noise floor of the detector, these triggered searches should also lead to rich science results even before the onset of Advanced LIGO. In this paper we provide a broad review of LIGO's astrophysically triggered searches and the sources they target

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    All-sky LIGO Search for Periodic Gravitational Waves in the Early S5 Data

    Get PDF
    We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50--1100 Hz and with the frequency's time derivative in the range -5.0E-9 Hz/s to zero. Data from the first eight months of the fifth LIGO science run (S5) have been used in this search, which is based on a semi-coherent method (PowerFlux) of summing strain power. Observing no evidence of periodic gravitational radiation, we report 95% confidence-level upper limits on radiation emitted by any unknown isolated rotating neutron stars within the search range. Strain limits below 1.E-24 are obtained over a 200-Hz band, and the sensitivity improvement over previous searches increases the spatial volume sampled by an average factor of about 100 over the entire search band. For a neutron star with nominal equatorial ellipticity of 1.0E-6, the search is sensitive to distances as great as 500 pc--a range that could encompass many undiscovered neutron stars, albeit only a tiny fraction of which would likely be rotating fast enough to be accessible to LIGO. This ellipticity is at the upper range thought to be sustainable by conventional neutron stars and well below the maximum sustainable by a strange quark star.Comment: 6 pages, 1 figur
    corecore