29 research outputs found

    Food security, farming, and climate change to 2050: Scenarios, results, policy options

    Get PDF
    As the global population grows and incomes in poor countries rise, so too, will the demand for food, placing additional pressure on sustainable food production. Climate change adds a further challenge, as changes in temperature and precipitation threaten agricultural productivity and the capacity to feed the world's population. This study assesses how serious the danger to food security might be and suggests some steps policymakers can take to remedy the situation.global food security, Climate change, Food prices, Agricultural productivity,

    Sustainable Sourcing of Global Agricultural Raw Materials: Assessing Gaps in Key Impact and Vulnerability Issues and Indicators.

    Get PDF
    Understanding how to source agricultural raw materials sustainably is challenging in today's globalized food system given the variety of issues to be considered and the multitude of suggested indicators for representing these issues. Furthermore, stakeholders in the global food system both impact these issues and are themselves vulnerable to these issues, an important duality that is often implied but not explicitly described. The attention given to these issues and conceptual frameworks varies greatly--depending largely on the stakeholder perspective--as does the set of indicators developed to measure them. To better structure these complex relationships and assess any gaps, we collate a comprehensive list of sustainability issues and a database of sustainability indicators to represent them. To assure a breadth of inclusion, the issues are pulled from the following three perspectives: major global sustainability assessments, sustainability communications from global food companies, and conceptual frameworks of sustainable livelihoods from academic publications. These terms are integrated across perspectives using a common vocabulary, classified by their relevance to impacts and vulnerabilities, and categorized into groups by economic, environmental, physical, human, social, and political characteristics. These issues are then associated with over 2,000 sustainability indicators gathered from existing sources. A gap analysis is then performed to determine if particular issues and issue groups are over or underrepresented. This process results in 44 "integrated" issues--24 impact issues and 36 vulnerability issues--that are composed of 318 "component" issues. The gap analysis shows that although every integrated issue is mentioned at least 40% of the time across perspectives, no issue is mentioned more than 70% of the time. A few issues infrequently mentioned across perspectives also have relatively few indicators available to fully represent them. Issues in the impact framework generally have fewer gaps than those in the vulnerability framework

    Innovation and access to technologies for sustainable development: diagnosing weaknesses and identifying interventions in the Transnational Arena

    Get PDF
    Sustainable development – improving human well-being across present generations without compromising the ability of future generations to meet their own needs – is a central challenge for the 21st century. Technological innovation can play an important role in moving society toward sustainable development. However, poor, marginalized, and future populations often do not fully benefit from innovation due to their lack of market or political power to influence innovation processes. As a result, current innovation systems fail to contribute as much as they might to meeting sustainable development goals. This paper focuses on how actors and institutions operating in the transnational arena can mitigate such shortfalls. To identify the most important transnational functions required to meet sustainable development needs our analysis undertook three main steps. First, we developed a framework to diagnose blockages in the global innovation system for particular technologies. This framework was built on existing theory and new empirical analysis. On the theory side, we drew from the literatures of systems dynamics; technology and sectoral innovation systems, science and technology studies, the economics of innovation, and global governance. On the empirical front, we conducted eighteen detailed case studies of technology innovation in multiple sectors relevant to sustainable development: water, energy, health, food, and manufactured goods. We use the framework to analyze our case studies in the common language of (1) technology stocks, (2) non-linear flows between stocks substantiated by specific mechanisms, and (3) characteristics of actors and socio-technical conditions (STCs) which mediate the flows between stocks . We identify blockages in the innovation system for each of the cases, diagnosing where in the innovation system flows were hindered and which specific sets of STCs and actor characteristics were associated with these blockages. Figure E.1 displays the components of our framework and how they relate

    Vorticity and divergence at scales down to 200 km within and around the polar cyclones of Jupiter

    Get PDF
    Since 2017 the Juno spacecraft has observed a cyclone at the north pole of Jupiter surrounded by eight smaller cyclones arranged in a polygonal pattern. It is not clear why this configuration is so stable or how it is maintained. Here we use a time series of images obtained by the JIRAM mapping spectrometer on Juno to track the winds and measure the vorticity and horizontal divergence within and around the polar cyclone and two of the circumpolar ones. We find an anticyclonic ring between the polar cyclone and the surrounding cyclones, supporting the theory that such shielding is needed for the stability of the polygonal pattern. However, even at the smallest spatial scale (180 km) we do not find the expected signature of convection—a spatial correlation between divergence and anticyclonic vorticity—in contrast with a previous study using additional assumptions about the dynamics, which shows the correlation at scales from 20 to 200 km. We suggest that a smaller size, relative to atmospheric thickness, of Jupiter’s convective storms compared with Earth’s, can reconcile the two studies

    Discovery of common and rare genetic risk variants for colorectal cancer.

    Get PDF
    To further dissect the genetic architecture of colorectal cancer (CRC), we performed whole-genome sequencing of 1,439 cases and 720 controls, imputed discovered sequence variants and Haplotype Reference Consortium panel variants into genome-wide association study data, and tested for association in 34,869 cases and 29,051 controls. Findings were followed up in an additional 23,262 cases and 38,296 controls. We discovered a strongly protective 0.3% frequency variant signal at CHD1. In a combined meta-analysis of 125,478 individuals, we identified 40 new independent signals at P < 5 × 10-8, bringing the number of known independent signals for CRC to ~100. New signals implicate lower-frequency variants, KrĂŒppel-like factors, Hedgehog signaling, Hippo-YAP signaling, long noncoding RNAs and somatic drivers, and support a role for immune function. Heritability analyses suggest that CRC risk is highly polygenic, and larger, more comprehensive studies enabling rare variant analysis will improve understanding of biology underlying this risk and influence personalized screening strategies and drug development.Goncalo R Abecasis has received compensation from 23andMe and Helix. He is currently an employee of Regeneron Pharmaceuticals. Heather Hampel performs collaborative research with Ambry Genetics, InVitae Genetics, and Myriad Genetic Laboratories, Inc., is on the scientific advisory board for InVitae Genetics and Genome Medical, and has stock in Genome Medical. Rachel Pearlman has participated in collaborative funded research with Myriad Genetics Laboratories and Invitae Genetics but has no financial competitive interest

    Liar! Liar! Identifying eligibility fraud by applicants in digital health research

    No full text
    Online studies enable researchers to recruit large, diverse samples, but the nature of these studies provides an opportunity for applicants to misrepresent themselves to increase the likelihood of meeting eligibility criteria for a trial, particularly those that provide financial incentives. This study describes rates of fraudulent applications to an online intervention trial of an Internet intervention for insomnia among older adults (ages ≄55). Applicants were recruited using traditional (e.g., flyers, health providers), online (e.g., Craigslist, Internet searches), and social media (e.g., Facebook) recruitment methods. Applicants first submitted an interest form that included identifying information (name, date of birth, address). This data was then queried against a national database (TransUnion's TLOxp) to determine the application's verification status. Applications were determined to be verified (i.e., information from interest form matched TLOxp report), potentially fraudulent (i.e., potential discrepancy in provided information on interest form versus TLOxp report), or fraudulent (i.e., confirmed discrepancy). Of 1766 total interest forms received, 125 (7.08%) were determined to be fraudulent. Enrollment attempts that were fraudulent were detected among 12.22% of applicants who reported learning of the study through online, 7.04% through social media, 4.58% through traditional, and 4.27% through other methods. Researchers conducting online trials should take precautions, as applicants may provide fraudulent information to gain access to their studies. Reviewing all applications and verifying the identities and eligibility of participants is critical to the integrity of online research trials

    Moist convection drives an upscale energy transfer at Jovian high latitudes

    No full text
    International audienceJupiter’s atmosphere is one of the most turbulent places in the solar system. Whereas observations of lightning and thunderstorms point to moist convection as a small-scale energy source for Jupiter’s large-scale vortices and zonal jets, this has never been demonstrated due to the coarse resolution of pre-Juno measurements. The Juno spacecraft discovered that Jovian high latitudes host a cluster of large cyclones with diameter of around 5,000 km, each associated with intermediate- (roughly between 500 and 1,600 km) and smaller-scale vortices and filaments of around 100 km. Here, we analyse infrared images from Juno with a high resolution of 10 km. We unveil a dynamical regime associated with a significant energy source of convective origin that peaks at 100 km scales and in which energy gets subsequently transferred upscale to the large circumpolar and polar cyclones. Although this energy route has never been observed on another planet, it is surprisingly consistent with idealized studies of rapidly rotating Rayleigh–BĂ©nard convection, lending theoretical support to our analyses. This energy route is expected to enhance the heat transfer from Jupiter’s hot interior to its troposphere and may also be relevant to the Earth’s atmosphere, helping us better understand the dynamics of our own planet

    Aix-Marseille University student's professional integration

    Get PDF
    International audienceThis contribution presented at the Alma Laurea conference (Rome, June 6th) aimed to present Aix-Marseille University services and practices regarding the students career development
    corecore