108 research outputs found

    Dynamics of Islet Autoantibodies During Prospective Follow-Up From Birth to Age 15 Years

    Get PDF
    Context: We set out to characterize the dynamics of islet autoantibodies over the first 15 years of life in children carrying genetic susceptibility to type 1 diabetes (T1D). We also assessed systematically the role of zinc transporter 8 autoantibodies (ZnT8A) in this context. Design: HLA-predisposed children (N = 1006, 53.0% boys) recruited from the general population during 1994 to 1997 were observed from birth over a median time of 14.9 years (range, 1.9-15.5 years) for ZnT8A, islet cell (ICA), insulin (IAA), glutamate decarboxylase (GADA), and islet antigen-2 (IA-2A) antibodies, and for T1D. Results: By age 15.5 years, 35 (3.5%) children had progressed to T1D. Islet autoimmunity developed in 275 (27.3%) children at a median age of 7.4 years (range, 0.3-15.1 years). The ICA seroconversion rate increased toward puberty, but the biochemically defined autoantibodies peaked at a young age. Before age 2 years, ZnT8A and IAA appeared commonly as the first autoantibody, but in the preschool years IA-2A- and especially GADA-initiated autoimmunity increased. Thereafter, GADA-positive seroconversions continued to appear steadily until ages 10 to 15 years. Inverse IAA seroconversions occurred frequently (49.3% turned negative) and marked a prolonged delay from seroconversion to diagnosis compared to persistent IAA (8.2 vs 3.4 years; P = .01). Conclusions: In HLA-predisposed children, the primary autoantibody is characteristic of age and might reflect the events driving the disease process toward clinical T1D. Autoantibody persistence affects the risk of T1D. These findings provide a framework for identifying disease subpopulations and for personalizing the efforts to predict and prevent T1D.Peer reviewe

    No Association Between Ljungan Virus Seropositivity and the Beta-cell Damaging Process in the Finnish Type 1 Diabetes Prediction and Prevention Study Cohort

    Get PDF
    Background: Ljungan virus (LV) has not confirmed to associate with any human disease, but a possible connection with type 1 diabetes has been suggested. LV is a rodent-borne picornavirus that induces a diabetes-like condition in rodents. Approximately 30% of adults and 60% of children are seropositive in Finland. The Finnish Type 1 Diabetes Prediction and Prevention study enabled the use of very well characterized sample panels from children seroconverted to positivity for multiple islet autoantibodies during their prospective observation from birth; in addition, samples from age, sex, human leukocyte antigen (HLA), and residence area matched control children. Methods: We analyzed LV IgG seroprevalence in 102 case children (65 had also developed type 1 diabetes), in addition to nondiabetic control children. LV and human parechovirus (HPeV) immunofluorescence assays were used to analyze LV and HPeV-specific IgG from 102 plasma samples taken at the time of islet autoantibody appearance and from 204 samples from the matched control children. Results: Altogether 46.1% of the case and 50.7% of the control children were positive for LV IgG (odds ratio 0.8; 95% confidence interval, 0.47-1.36; P = 0.416) and 67.6% versus 79.8% were positive for HPeV IgG, respectively (odds ratio 0.49, 0.27-0.9, P = 0.023). Conclusions: Thus, no risk associations between LV or HPeV-specific IgG and islet autoimmunity were observed. However, a trend for significantly higher prevalence of HPeV antibodies in control children (P = 0.023) suggests a possible protective association of this virus with islet autoimmunity.Peer reviewe

    HLA and non-HLA genes and familial predisposition to autoimmune diseases in families with a child affected by type 1 diabetes

    Get PDF
    Genetic predisposition could be assumed to be causing clustering of autoimmunity in individuals and families. We tested whether HLA and non-HLA loci associate with such clustering of autoimmunity. We included 1,745 children with type 1 diabetes from the Finnish Pediatric Diabetes Register. Data on personal or family history of autoimmune diseases were collected with a structured questionnaire and, for a subset, with a detailed search for celiac disease and autoimmune thyroid disease. Children with multiple autoimmune diseases or with multiple affected first-or second-degree relatives were identified. We analysed type 1 diabetes related HLA class II haplotypes and genotyped 41 single nucleotide polymorphisms (SNPs) outside the HLA region. The HLA-DR4-DQ8 haplotype was associated with having type 1 diabetes only whereas the HLA-DR3-DQ2 haplotype was more common in children with multiple autoimmune diseases. Children with multiple autoimmune diseases showed nominal association with RGS1 (rs2816316), and children coming from an autoimmune family with rs11711054 (CCR3-CCR5). In multivariate analyses, the overall effect of non-HLA SNPs on both phenotypes was evident, associations with RGS1 and CCR3-CCR5 region were confirmed and additional associations were implicated: NRP1, FUT2, and CD69 for children with multiple autoimmune diseases. In conclusion, HLA-DR3-DQ2 haplotype and some non-HLA SNPs contribute to the clustering of autoimmune diseases in children with type 1 diabetes and in their families.Peer reviewe

    Dynamics of Islet Autoantibodies During Prospective Follow-Up From Birth to Age 15 Years

    Get PDF
    Context: We set out to characterize the dynamics of islet autoantibodies over the first 15 years of life in children carrying genetic susceptibility to type 1 diabetes (T1D). We also assessed systematically the role of zinc transporter 8 autoantibodies (ZnT8A) in this context.Design: HLA-predisposed children (N = 1006, 53.0% boys) recruited from the general population during 1994 to 1997 were observed from birth over a median time of 14.9 years (range, 1.9-15.5 years) for ZnT8A, islet cell (ICA), insulin (IAA), glutamate decarboxylase (GADA), and islet antigen-2 (IA-2A) antibodies, and for T1D.Results: By age 15.5 years, 35 (3.5%) children had progressed to T1D. Islet autoimmunity developed in 275 (27.3%) children at a median age of 7.4 years (range, 0.3-15.1 years). The ICA seroconversion rate increased toward puberty, but the biochemically defined autoantibodies peaked at a young age. Before age 2 years, ZnT8A and IAA appeared commonly as the first autoantibody, but in the preschool years IA-2A- and especially GADA-initiated autoimmunity increased. Thereafter, GADA-positive seroconversions continued to appear steadily until ages 10 to 15 years. Inverse IAA seroconversions occurred frequently (49.3% turned negative) and marked a prolonged delay from seroconversion to diagnosis compared to persistent IAA (8.2 vs 3.4 years; P = .01).Conclusions: In HLA-predisposed children, the primary autoantibody is characteristic of age and might reflect the events driving the disease process toward clinical T1D. Autoantibody persistence affects the risk of T1D. These findings provide a framework for identifying disease subpopulations and for personalizing the efforts to predict and prevent T1D.</div

    Association between family history, early growth and the risk of beta cell autoimmunity in children at risk for type 1 diabetes

    Get PDF
    Aims/hypothesis The aim of this work was to examine the relationship between family history of type 1 diabetes, birthweight, growth during the first 2 years and development of multiple beta cell autoantibodies in children with a first-degree relative with type 1 diabetes and HLA-conferred disease susceptibility. Methods In a secondary analysis of the Trial to Reduce IDDM in the Genetically at Risk (TRIGR), clinical characteristics and development of beta cell autoantibodies were compared in relation to family history of type 1 diabetes (mother vs father vs sibling) in 2074 children from families with a single affected family member. Results Multiple autoantibodies (>= 2 of 5 measured) developed in 277 (13%) children: 107 (10%), 114 (16%) and 56 (18%) born with a mother, father or sibling with type 1 diabetes, respectively (p <0.001). The HR for time to multiple autoimmunity was 0.54 (95% CI 0.39, 0.75) in offspring of affected mothers (n = 107/1046,p <0.001) and 0.81 (95% CI 0.59, 1.11) (n = 114/722,p = 0.19) in offspring of affected fathers, compared with participants with a sibling with type 1 diabetes (comparator groupn = 56/306). The time to the first autoantibody present (to insulin, GAD, tyrosine phosphatase-related insulinoma-associated 2 molecules, islet cell or zinc transporter 8) was similar in the three groups. Height velocity (zscore/year) in the first 24 months was independently associated with developing multiple antibodies in the total cohort (HR 1.31 [95% CI 1.01, 1.70],p = 0.04). A higher birthweight in children born to an affected mother vs affected father or an affected sibling was not related to the risk of multiple autoimmunity. Conclusions/interpretation The risk of developing multiple autoantibodies was lower in children with maternal type 1 diabetes. For the whole group, this risk of developing multiple autoantibodies was independent of birthweight but was greater in those with increased height velocity during the first 2 years of life. However, the risk associated with paternal type 1 diabetes was not linked to differences in birthweight or early growth.Peer reviewe

    Dietary fatty acid intake in childhood and the risk of islet autoimmunity and type 1 diabetes : the DIPP birth cohort study

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Purpose The aim was to study the associations between dietary intake of fatty acids in childhood and the risk of islet autoimmunity and type 1 diabetes (T1D). Methods The prospective Finnish Type 1 Diabetes Prediction and Prevention (DIPP) Study included children with genetic susceptibility to T1D born between 1996 and 2004. Participants were followed up every 3 to 12 months up to 6 years for diet, islet autoantibodies, and T1D. Dietary intake of several fatty acids at the age of 3 months to 6 years was assessed 1-8 times per participant with a 3-day food record. Joint models adjusted for energy intake, sex, HLA genotype and familial diabetes were used to investigate the associations of longitudinal intake of fatty acids and the development of islet autoimmunity and T1D. Results During the 6-year follow-up, 247 (4.4%) children of 5626 developed islet autoimmunity and 94 (1.7%) children of 5674 developed T1D. Higher intake of monounsaturated fatty acids (HR 0.63; 95% CI 0.47, 0.82), arachidonic acid (0.69; 0.50, 0.94), total n-3 fatty acids (0.64; 0.48, 0.84), and long-chain n-3 fatty acids (0.14; 0.04, 0.43), was associated with a decreased risk of islet autoimmunity with and without energy adjustment. Higher intake of total fat (0.73; 0.53, 0.98), and saturated fatty acids (0.55; 0.33, 0.90) was associated with a decreased risk of T1D only when energy adjusted. Conclusion Intake of several fatty acids was associated with a decreased risk of islet autoimmunity or T1D among high-risk children. Our findings support the idea that dietary factors, including n-3 fatty acids, may play a role in the disease process of T1D.Peer reviewe

    MHC Class II Heterozygosity Associated With Attractiveness of Men and Women

    Get PDF
    The genes of the Major Histocompatibility Complex (MHC), which plays a fundamental role in the immune system, are some of the most diverse genes in vertebrates and have been connected to mate choice in several species, including humans. While studies suggest a positive relationship between MHC diversity and male facial attractiveness, the connection of MHC diversity to other visual traits and female attractiveness is still unclear. The purpose of this study was to investigate further whether MHC heterozygosity, indicating genetic quality, is associated with visual traits affecting mate preferences in humans. In total 74 Latvian men and 49 women were genotyped for several MHC loci and rated for facial and, in men, also body attractiveness. The results indicate a preference for MHC heterozygous female and male faces. However, the initially positive relationship between MHC heterozygosity and facial attractiveness becomes non-significant in females, when controlling for multiple testing, and in males, when age and fat content is taken into account, referring to the importance of adiposity in immune function and thus also attractiveness. Thus overall the effect of MHC heterozygosity on attractiveness seems weak. When considering separate loci, we show that the main gene related to facial attractiveness is the MHC class II DQB1; a gene important also in viral infections and autoimmune diseases. Indeed, in our study, heterozygous individuals are rated significantly more attractive than their homozygous counterparts, only in relation to gene DQB1. This study is the first to indicate a link between DQB1 and attractiveness in humans

    MHC class II heterozygosity associated with attractiveness of men and women

    Get PDF
    The genes of the Major Histocompatibility Complex (MHC), which plays a fundamental role in the immune system, are some of the most diverse genes in vertebrates and have been connected to mate choice in several species, including humans. While studies suggest a positive relationship between MHC diversity and male facial attractiveness, the connection of MHC diversity to other visual traits and female attractiveness is still unclear. The purpose of this study was to investigate further whether MHC heterozygosity, indicating genetic quality, is associated with visual traits affecting mate preferences in humans. In total 74 Latvian men and 49 women were genotyped for several MHC loci and rated for facial and, in men, also body attractiveness. The results indicate a preference for MHC heterozygous female and male faces. However, the initially positive relationship between MHC heterozygosity and facial attractiveness becomes non-significant in females, when controlling for multiple testing, and in males, when age and fat content is taken into account, referring to the importance of adiposity in immune function and thus also attractiveness. Thus overall the effect of MHC heterozygosity on attractiveness seems weak. When considering separate loci, we show that the main gene related to facial attractiveness is the MHC class II DQB1; a gene important also in viral infections and autoimmune diseases. Indeed, in our study, heterozygous individuals are rated significantly more attractive than their homozygous counterparts, only in relation to gene DQB1. This study is the first to indicate a link between DQB1 and attractiveness in humans.Turku University Foundation, Finnish Cultural Foundation and Eesti Teadusagentuur.http://journals.sagepub.com/home/evphj2021Genetic

    Association between family history, early growth and the risk of beta cell autoimmunity in children at risk for type 1 diabetes

    Get PDF
    Aims/hypothesisThe aim of this work was to examine the relationship between family history of type 1 diabetes, birthweight, growth during the first 2 years and development of multiple beta cell autoantibodies in children with a first-degree relative with type 1 diabetes and HLA-conferred disease susceptibility.MethodsIn a secondary analysis of the Trial to Reduce IDDM in the Genetically at Risk (TRIGR), clinical characteristics and development of beta cell autoantibodies were compared in relation to family history of type 1 diabetes (mother vs father vs sibling) in 2074 children from families with a single affected family member.ResultsMultiple autoantibodies (>= 2 of 5 measured) developed in 277 (13%) children: 107 (10%), 114 (16%) and 56 (18%) born with a mother, father or sibling with type 1 diabetes, respectively (p Conclusions/interpretationThe risk of developing multiple autoantibodies was lower in children with maternal type 1 diabetes. For the whole group, this risk of developing multiple autoantibodies was independent of birthweight but was greater in those with increased height velocity during the first 2 years of life. However, the risk associated with paternal type 1 diabetes was not linked to differences in birthweight or early growth.</div
    corecore