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Abstract
The genes of the Major Histocompatibility Complex (MHC), which plays a fundamental role in the immune system, are some of
the most diverse genes in vertebrates and have been connected to mate choice in several species, including humans. While studies
suggest a positive relationship between MHC diversity and male facial attractiveness, the connection of MHC diversity to other
visual traits and female attractiveness is still unclear. The purpose of this study was to investigate further whether MHC het-
erozygosity, indicating genetic quality, is associated with visual traits affecting mate preferences in humans. In total 74 Latvian men
and 49 women were genotyped for several MHC loci and rated for facial and, in men, also body attractiveness. The results indicate
a preference for MHC heterozygous female and male faces. However, the initially positive relationship between MHC hetero-
zygosity and facial attractiveness becomes non-significant in females, when controlling for multiple testing, and in males, when age
and fat content is taken into account, referring to the importance of adiposity in immune function and thus also attractiveness.
Thus overall the effect of MHC heterozygosity on attractiveness seems weak. When considering separate loci, we show that the
main gene related to facial attractiveness is the MHC class II DQB1; a gene important also in viral infections and autoimmune
diseases. Indeed, in our study, heterozygous individuals are rated significantly more attractive than their homozygous counter-
parts, only in relation to gene DQB1. This study is the first to indicate a link between DQB1 and attractiveness in humans.
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Introduction

By choosing mates with traits that indicate “good genes”, indi-

viduals might gain several benefits. Such preferences are thought

to be adaptive as the “good genes” from the chosen mates pass on

to the offspring raising their attractiveness (Fisher, 1915) or via-

bility (Hamilton & Zuk, 1982). The traits selected include visual,

vocal and olfactory signals and the cues reflecting indirect bene-

fits for the offspring and also direct benefits in the form of parental

care and resources (Kirkpatrick & Ryan, 1991). One of the genetic

regions connected to mate choice in humans, as well as many

other vertebrates, is the major histocompatibility complex (MHC,

termed human leucocyte antigen, HLA, in humans), which pro-

tein products play a fundamental role in vertebrate immune pro-

cesses (Havlicek & Roberts, 2009; Klein & Sato, 2000b; Penn &

Potts, 1999).

The MHC genes involved in the immune response are

divided into two classes: MHC class I genes (e.g. HLA-A, B

and C) coding for the a-polypeptide chain of the class I mole-

cule and MHC class II genes (e.g. HLA-DQB1, DQA1 and

DRB1) coding for the a- and b-polypeptide chains of the class
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II molecules (Klein & Sato, 2000b). Genes belonging to MHC

class I are expressed in almost all somatic cells; MHC class II

genes, on the other hand, are in normal conditions expressed

only in a subgroup of immune cells including B-cells, activated

T-cells, macrophages, dendritic cells and thymic epithelial

cells called as a group also antigen presenting cells (Howard,

1987). Both MHC class I and MHC class II molecules function

as initiators of the adaptive immune response by presentation

of short antigen derived peptides to T-cells, which develop into

cytotoxic T-cells or helper T-cells (Klein & Sato, 2000b).

When activated by MHC I–peptide complex, cytotoxic T-

cells are capable of killing antigen presenting cell and thus

limit the spread of intracellular pathogens like viral infections.

Helper T-cells, on the other hand, become activated mainly by

peptides derived from molecules phagocytosed by the antigen

presenting cell and presented by MHC II molecule, and fight

the infections by further activating macrophages, B cells and

cytotoxic T-cells (Klein & Sato, 2000b).

Most of the genes in the MHC region express extremely

high intrapopulation polymorphism, which has been explained

by different kinds of balancing selection, including pathogen

driven selection, heterozygote advantage and sexual selection

(Apanius et al., 1997; Brown & Eklund, 1994; Havlicek &

Roberts, 2009). In pathogen driven frequency dependent selec-

tion models, MHC polymorphism has been thought to be a

consequence of an evolutionary arms race between the patho-

gens and vertebrates (Havlicek & Roberts, 2009), although also

the spatial and temporal variation of pathogens, would lead to

overall higher fitness of heterozygous compared homozygous

individuals, and thus would maintain the intrapopulation poly-

morphism (Hedrick, 2002). The heterozygote advantage, which

we focus on, can be explained through the function of MHC

genes: because of codominant expression of the MHC genes, a

larger number of peptides stimulating immune response can be

presented to T cells in MHC heterozygous individuals, com-

pared to MHC homozygous individuals (Havlicek & Roberts,

2009). The advantageous heterozygosity in the MHC area can

be maintained, in addition to natural selection, by sexual selec-

tion. Mate preferences favoring heterozygotes and rare alleles

or genetically dissimilar individuals, would lead to increased

offspring heterozygosity (Havlicek & Roberts, 2009; Mitton

et al., 1993), and thus preferences based on partner’s MHC

diversity deserve to be more thoroughly explored (Radwan

et al., 2020). Although the favoring of genetically dissimilar

individuals might be a part of general inbreeding avoidance to

prevent the effect of recessive deleterious alleles (Apanius

et al., 1997; Penn & Potts, 1999), it has been shown that selec-

tion for MHC diversity can be independent of overall genomic

diversity (Lie et al., 2008). By favoring MHC heterozygous

individuals instead of MHC dissimilar individuals, one would

avoid extreme outbreeding and might achieve optimal rather

than maximal heterozygosity in the offspring (Bateson, 1980;

Nowak et al., 1992). Indeed, avoiding extreme outbreeding

might cause the higher fitness found in some distantly related

human couples (Helgason et al., 2008), while at least in stickle-

backs, optimal MHC heterozygosity compared to maximal

MHC heterozygosity is connected to lower parasitic load, and

thus better survival (Milinski, 2003). This reproductive pattern

supports the “good genes as heterozygosity” -hypothesis pre-

sented by Brown (Brown, 1998), which suggest that mate

choice, in relation to MHC, should operate in a way that pro-

vides the offspring the best possible immune defense, and thus

improves their fitness. Optimizing the MHC heterozygosity of

the offspring would be profitable, while heterozygosity seems

to indicate better immune response, compared to MHC homo-

zygosity, by for example enhancing resistance to diseases such

as Hepatitis B (Thursz et al., 1997) and delaying the onset to

AIDS in HIV-1-infections (Carrington et al., 1999). In addition,

favoring of MHC heterozygous mates might also mean direct

benefits, while the MHC heterozygous mates selected could

have a reduced risk of transmitting diseases provided by more

effective immunity (Lie et al., 2008). Although, when very

attractive, mates might have had more sexual encounters and

thus might carry more sexually transmitted diseases (Fethers

et al., 2008; Zaromatidis et al., 2004).

Reflecting both indirect and direct benefits of favoring

MHC heterozygous mates, MHC heterozygosity has indeed

been connected to higher reproductive success and better

advertisement of sexually selected male traits, compared to

MHC homozygous individuals, in several mammal as well as

bird species (Ditchkoff et al., 2001; Sauermann et al., 2001;

Seddon et al., 2004). In primates, selection for MHC diverse

males occurs in several species, including rhesus macaque

(Macaca mulatta), grey mouse lemur (Microcebus murinus),

fat-tailed dwarf lemur (Cheirogaleus medius), mandrill

(Mandrillus sphinx) (Setchell & Huchard, 2010) and humans

(Havlicek & Roberts, 2009; Winternitz & Abbate, 2015). In

humans, studies have mostly concentrated on MHC-related

mate preferences in olfactory cues and mate choice in actual

couples. The results from MHC-related mate choice studies

made on established couples, such as married couples, are very

mixed: some show a bias toward MHC similarity (Rosenberg

et al., 1983), some dissimilarity (Garver-Apgar et al., 2006;

Ober et al., 1997) and some to random distribution (Ihara

et al., 2000; Jin et al., 1995; Nordlander et al., 1983). Odor-

based MHC studies, on the other hand, have mostly revealed

disassortative preferences in choosing potential partners

(Thornhill et al., 2003; Wedekind & Furi, 1997; Wedekind

et al., 1995). Although facial preferences arise early in devel-

opment and across cultures, only recently has facial attractive-

ness been connected to the MHC region (Havlicek & Roberts,

2009; Rhodes, 2006). A few facial attractiveness studies made,

mostly indicate a preference for MHC-similar individuals

(Havlicek & Roberts, 2009; Roberts, Little, Gosling, Jones,

et al., 2005), but also for MHC heterozygous men (Lie et al.,

2008; Roberts, Little, Gosling, Perrett, et al., 2005). In an

experiment by Roberts et al. (2005) women rated pictures of

MHC heterozygous men significantly more attractive than the

pictures of MHC homozygous men (Roberts, Little, Gosling,

Perrett, et al., 2005). Furthermore, the pictures of skin of het-

erozygous men were judged healthier than the skin of homo-

zygotes (Roberts, Little, Gosling, Perrett, et al., 2005). This has
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been thought as an outcome of less pathogen stress on MHC

heterozygotes during development, which could contribute to

the features affecting attractiveness (Rhodes et al., 2001), such

as facial averageness (Lie et al., 2008) and quality of skin

(Roberts, Little, Gosling, Perrett, et al., 2005). In females MHC

heterozygosity has been shown to be connected to sexual suc-

cess measured by the number of sexual partners, but not facial

attractiveness (Coetzee et al., 2007; Lie et al., 2008, 2010).

Finally, it has been shown that preferences related to hetero-

zygosity at the MHC area are independent of the overall pre-

ferences for genomic heterozygosity (Carrington et al., 1999;

Lie et al., 2008). However, not all studies have confirmed the

positive relationship between MHC heterozygosity and facial

attractiveness related to mate preferences (Coetzee et al., 2007;

Thornhill et al., 2003). In a study of Coetzee et al. (2007)

neither HLA heterozygosity nor HLA allele frequency pre-

dicted how attractive men rated the female participants. In

addition, a study by Thornhill et al. (2003) showed a correlation

between MHC heterozygosity and male scent attractiveness,

but not between MHC heterozygosity and facial attractiveness

in either sex.

The MHC-related preference studies in humans show a great

variability in methods and results, but overall indicate a con-

nection between MHC variability and mate preferences. While

results from studies made on actual couples seem mixed, and

might be more affected by cultural phenomena and expecta-

tions than mate preference studies, studies concentrating only

on sexually selected traits can reveal preferences important to

further improve sexual selection theory in humans. A relation-

ship between MHC genes and odors has been found (Thornhill

et al., 2003; Wedekind & Furi, 1997; Wedekind et al., 1995)

and explained by MHC linked olfactory receptors (Younger

et al., 2001) and the finding that the same peptides that serve

as ligands for MHC I molecules, also cause sensory stimuli in

the mammalian vomeronasal organ, important for example in

mate recognition (Leinders-Zufall et al., 2004). In humans, the

odor stimulation of “non-self” or “self” MHC peptides seem to

activate areas of frontal cortex and thus the MHC peptides

might be detected without the vomeronasal organ, missing

from humans, as well (Milinski et al., 2013). Facial attractive-

ness seems to have a connection to both MHC similarity

between women and men (Roberts Little, Gosling, Jones,

et al., 2005) and in men to MHC heterozygosity (Lie et al.,

2008; Roberts, Little, Gosling, Perrett, et al., 2005; Winternitz

& Abbate, 2015). But the mechanism, how MHC genes might

be related to visual characters, and if there are differences

between the effects of the various genes in the MHC area, is

still unclear. Furthermore, no studies have linked MHC hetero-

zygosity to female facial attractiveness or MHC heterozygosity

to male body attractiveness (Havlicek & Roberts, 2009; Win-

ternitz & Abbate, 2015), even though, as a visual character, it

might also affect mate choice. Certain MHC genes have indeed

been shown to affect secondary sexual characters, such as body

mass, in other mammals (Ditchkoff et al., 2001).

The purpose of this study was to examine the connection of

MHC heterozygosity to visual characters, including facial and

body attractiveness, which might affect mate preferences in

humans. The level of heterozygosity was determined by geno-

typing several loci from both MHC class II and MHC class I in

a sample of men, and MHC class II loci DQB1 and DQA1 in a

sample of women. For males MHC class II genotyping

included DQB1, DQA1 and DRB1 loci, which have been stud-

ied to define the risk of insulin dependent diabetes mellitus

(T1D) (Kiviniemi et al., 2007). The polymorphism of these

genes contributes highly to the genetic risk of T1D, but has

also been shown to influence mate choice (Kahles et al., 2009).

In addition, MHC class I loci HLA-A and HLA-B were geno-

typed for males, as the molecules encoded by these highly

polymorphic genes, found on all nuclear cells, are important

in the presentation of microbial antigens to immune cells, era-

dicating intracellular infections (Klein & Sato, 2000b). For

their importance in immunology, these genes have also been

studied in multiple mate preference related experiments in

males and have shown variable connections to body odor and

facial preferences as well as to actual mate choice in marriage

(Havlicek & Roberts, 2009).

The main focus of our study was on female mate prefer-

ences, because sex differences in parental investment might

lead to stronger female than male choice (Trivers, 1972). How-

ever, while preferences for MHC diversity, based on studies

made so far, have been detectable only in females (Winternitz

& Abbate, 2015), we expanded our study to cover also male

mate choice in the MHC loci that seemed to be controlling the

female mate choice. The focus was on MHC heterozygosity, as

it seems to indicate better immune response, compared to MHC

homozygosity (Carrington et al., 1999; Thursz et al., 1997) and

might thus be associated with physical features selected in mate

choice as well (Lie et al., 2008). Based on earlier studies (Car-

rington et al., 1999; Lie et al., 2008; Thursz et al., 1997), the

hypothesis was that MHC heterozygosity would be positively

connected to attractiveness.

Material and Methods

Collection of Samples

Seventy four Latvian men (mean age¼ 23.1, SD¼ 3.9, table S1)

and 49 Latvian women (mean age ¼ 20.2, SD ¼ 1.4, table S1)

took part in this study. The participants were both staff and

students from Daugavpils University and Transportation College

of Daugavpils.

Facial photographs and for males also full body photographs

were taken from the participants in conditions described in

Rantala et al. (2013). Five of the men studied did not give a

permission for a body photograph. In addition, each partici-

pant’s percentage body fat was measured (Bioelectric impe-

dance analysis, Omron Body Composition Monitor BF-500).

The facial and body attractiveness of the males were rated from

the male photographs by 94 female students (mean age ¼ 20,

SD ¼ 1.89) from the University of Daugavpils from �5 (very

unattractive) to þ5 (very attractive) and the facial attractive-

ness of the females was rated by 18 males (mean age ¼ 21.7

Hakkarainen et al. 3



years, SD ¼ 1.53) from the University of Daugavpils, in con-

ditions described in Rantala et al. (2013). None of the raters

were using hormonal contraception. The faces of full body

images were blurred to avoid the use of facial characteristics

in body judgments. Inter-rater reliability was high for all rat-

ings (all Cronbach a > 0.93) and thus all the ratings were

averaged across raters.

HLA Genotyping

The blood samples were dried on FTA® Classic Card (What-

man International Ltd., Maidstone, UK) sample collection

cards, and genotyping for haplotypes composed of alleles in

MHC class II genes HLA-DRB1, -DQA1 and DQB1 was per-

formed as described in detail in Kiviniemi et al. (Kiviniemi

et al., 2007). Uncommon haplotypes were further resolved by

sequencing for DQB1 by the MegaBace sequencer (MB1000),

using Nucleo spin Extract II kit (Macherey Nagel) and Nucleo-

SEQ kit (Macherey Nagel) for sample preparation.

The DNA for the HLA class I genotyping was obtained from

the blood using a salt extraction protocol similar to that out-

lined in Aljanabi and Martinez (1997) (Aljanabi & Martinez,

1997). HLA class I genes HLA-A and HLA-B were genotyped

with a LABType® SSO Typing Test using One lambda LAB-

Types RSSO1A (lot012) and RSSO1B (lot014). The test was

also used to genotype 10 unclear individuals for HLA class II

gene DR with One lambda LABType RSO2BIT (lot015). For

the LABType typing test the concentration of the DNA samples

was adjusted with sterile water to 20 ng/ml. The concentration

was measured with Qubit® Fluorometer. The results were col-

lected with Luminex 100/200 analyzer and Luminex 100 IS 2.3

Software by using primerspecific templates. The results were

analyzed with HLA Fusion™ Software Version 2.0. For every

genotyping test we had a subset of positive controls and all

unclear samples were genotyped twice. Sufficient results were

obtained for all five HLA loci in males, but only two HLA loci

(HLA-DQA1 and HLA-DQB1) in females.

Statistical Analyses

All analyses were performed in SPSS version 26. Overall het-

erozygosity was calculated in each sex by calculating the pro-

portion of heterozygous HLA loci from all the loci genotyped.

Prior to analysis, all variables were examined for accuracy of

data entry, missing values, outliers, pairwise linearity and

normality of their distributions (Tabachnick & Fidell, 2006).

The descriptive statistics of all variables are shown in table S1.

All variables were linearly related, except the relationship

between percentage fat and body attractiveness in men and the

relationship between percentage fat and facial attractiveness in

women, in that underweight and overweight individuals were

considered less attractive than average weight counterparts

(Figure S1, S2). The relationship between percentage fat and

facial attractiveness was linear in men. All values were also

normally distributed in both sexes (two-tailed critical z score¼
+3.29, p ¼ 0.001) except overall heterozygosity in the male

(skewness z ¼ �6.34, kurtosis z ¼ 5.41) and female (skewness

z ¼ �8.28, kurtosis z ¼ 13.84) dataset. Standardized residual

plots also indicated that the residuals were not normally dis-

tributed. We could not successfully normalize overall hetero-

zygosity in either men or women so Spearman’s correlations

and Spearman’s partial correlations with bootstrapping (1,000

iterations) were conducted to test the association between over-

all heterozygosity and facial attractiveness. Twenty nine of the

74 men studied were partly or totally homozygous for the five

HLA loci, while seven of the 42 women were partly or totally

homozygous for the two HLA loci. Analysis of Covariance

(ANCOVA), with bootsrapping (1,000 iterations), was used

to compare the differences between the heterozygous and

homozygous groups for the different loci.

Results

Overall Heterozygosity and Attractiveness in Males

Overall heterozygosity was significantly and positively corre-

lated with facial attractiveness, indicating that more HLA het-

erozygous men were considered more attractive (rs ¼ 0.352,

N ¼ 74, SE ¼ 0.103, 95% CI ¼ 0.157, 0.545, p ¼ 0.002; Table

1). Age and percentage body fat might, however, confound the

relationship between HLA heterozygosity and facial attractive-

ness, since age and body fat were significantly associated with

both HLA heterozygosity and facial attractiveness (Table 1):

younger and skinnier men were judged more attractive and had

higher overall heterozygosity (Table 1). We therefore conducted

Spearman’s partial correlations between overall heterozygosity

and facial attractiveness, controlling for age and percentage fat,

where after the relationship between overall heterozygosity and

facial attractiveness was no longer significant (rs ¼ 0.149, df ¼
70, SE ¼ 0.107, 95% CI ¼ �0.083, 0.353, p > 0.1).

Table 1. Spearman’s Correlations Between Overall Heterozygosity, Age, Fat Percentage and Facial and Body Attractiveness in Male and Female
Participants.

Overall Heterozygosity Age Fat % Facial Attractiveness Body Attractiveness

Overall Heterozygosity — �0.402*** �0.245* 0.352** 0.277*
Age �0.009 — 0.342** �0.511*** �0.477***
Fat % �0.086 �0.38 — �0.478*** �0.490***
Facial attractiveness 0.311* 0.006 �0.419*** — 0.554***

Note: The results for male participants (N ¼ 74) are indicated above the diagonal and female participants below the diagonal. Both facial and body attractiveness
measures were available in men, but only facial attractiveness measurements in women (N ¼ 49). *p � 0.05, **p � 0.01, ***p � 0.001.
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Heterozygosity was also initially positively correlated with body

attractiveness (rs ¼ 0.277, N ¼ 69, SE ¼ 0.111, 95% CI ¼
0.053, 0.486, p ¼ 0.021; Table 1), but not after controlling for

age and percentage fat (rs¼ 0.079, df¼ 65, SE¼ 0.099, 95% CI

¼ �0.123, 0.270, p > 0.1). Overall, we observed a stronger

relationship between overall heterozygosity and facial attrac-

tiveness than between overall heterozygosity and body attrac-

tiveness in men, although both were non-significant after

controlling for age and percentage fat.

Overall Heterozygosity and Attractiveness in Females

Overall heterozygosity was significantly and positively corre-

lated with facial attractiveness in women, indicating that more

HLA heterozygous women were considered more attractive

(rs ¼ 0.311, N ¼ 49, SE ¼ 0.107, 95% CI ¼ 0.081, 0.506,

p ¼ 0.029; Table 1). Percentage fat showed a significant curvi-

linear association with facial attractiveness (F(2,62) ¼ 15.84,

p < 0.001, R2 ¼ 0.34), in that underweight and overweight

women were considered less attractive than average weight

women (Figure S2). Age was not significantly correlated with

facial attractiveness or overall heterozygosity (Table 1), most

likely because the age range in women (18–24) was much

smaller than the age range in men (19–31). We therefore con-

ducted Spearman’s partial correlations between overall hetero-

zygosity and facial attractiveness, controlling for percentage

fat. The relationship between overall heterozygosity and facial

attractiveness was still significant after controlling for percent-

age fat (rs¼ 0.291, df¼ 46, SE¼ 0.08, 95% CI¼ 0.138, 0.448,

p ¼ 0.045), but not after controlling for multiple testing (Bon-

ferroni corrected a ¼ 0.025).

Heterozygosity at Specific HLA Loci and Attractiveness

HLA-DQB1& HLA-DQA1. HLA-DQB1 and HLA-DQA1 results

were available for both sexes so we conducted an ANCOVA to

determine if there is a statistically significant difference in

facial attractiveness between heterozygous and homozygous

individuals at these loci, controlling for age, sex, and percent-

age fat. There was a significant effect of HLA-DQB1 on facial

attractiveness before (F(1,121) ¼ 10.496, Zp
2 ¼ 0.082, p ¼

0.002, Figure 1) and after controlling for age, sex and percent-

age fat (F(1,120) ¼ 5.183, Zp
2 ¼ 0.045, p ¼ 0.025). There was

no significant effect of HLA-DQA1 (F(1,120) ¼ 0.479, Zp
2 ¼

0.004, p > 0.1) or any of their interactions. Heterozygous indi-

viduals at the HLA-DQB1 locus were significantly more attrac-

tive (M ¼ �0.961, SE ¼ 0.295, 95% CI ¼ �1.439, �0.321)

than their homozygous counterparts (M¼�1.873, SE¼ 0.170,

95% CI ¼ �2.195, �1.515) after controlling for age, sex and

percentage fat.

We also conducted an ANCOVA to determine if there is a

statistically significant difference in body attractiveness

between heterozygous and homozygous individuals at these

loci, controlling for age and percentage fat (not sex, since body

attractiveness ratings were only available for male bodies).

Neither HLA-DQB1, nor HLA-DQA1 or their interaction, had

a significant effect on body attractiveness before or after con-

trolling for age and percentage fat (p > 0.1).

HLA-DRB1, HLA-A and HLA-B. HLA-DRB1, HLA-A and HLA-B

results were only available in males so we conducted an

ANCOVA to determine if there is a statistically significant

difference in facial attractiveness between heterozygous and

homozygous individuals at these loci, controlling for age and

percentage fat. Neither of these loci, nor any of their interac-

tions, had a significant effect on facial or body attractiveness

before or after controlling for age and percentage fat (p > 0.1).

Discussion

This study provides partial support for the argument that MHC

diversity plays a role in male attractiveness (Lie et al., 2008;

Roberts, Little, Gosling, Perrett, et al., 2005), by showing pos-

itive associations between attractiveness and MHC heterozyg-

osity. In our study of males, we found an initial positive

relationship between attractiveness and MHC heterozygosity.

However, the positive relationship between MHC diversity and

facial, as well as body attractiveness, becomes non-significant

when male age and fat percent is considered, implying that age

and fat percent have a stronger effect on attractiveness than

MHC heterozygosity. Indeed, not all previous studies have

evidenced a relationship between MHC heterozygosity and

male attractiveness (Coetzee et al., 2007; Thornhill et al.,

2003), and thus the positive relationship found between MHC

heterozygosity and male attractiveness, might overall be weak

and mediated by variables such as adiposity as shown in our

data. In previous research, where positive associations between

MHC heterozygosity and male facial attractiveness have been

found, age and fat percentage have not been controlled for (Lie

et al., 2008; Roberts, Little, Gosling, Perrett, et al., 2005) and

thus it would be interesting to see if the associations hold after

controlling for these parameters.

In our study of females, we found an initial positive rela-

tionship between overall MHC heterozygosity and facial

attractiveness. However, the relationship becomes non-

significant after controlling for multiple testing and thus, over-

all, the effect of heterozygosity on attractiveness seems weak.

A previous study by Lie et al. (2010) have shown a positive

relationship between female MHC heterozygosity and sexual

success measured by the number of sexual partners, but no

relationship between MHC heterozygosity and female facial

attractiveness has been found earlier (Coetzee et al., 2007; Lie

et al., 2008, 2010). However, earlier studies concentrating on

female facial attractiveness and MHC heterozygosity, have

been performed in different populations, such as South African

Tswana (Coetzee et al., 2007) and Caucasian Australian popu-

lations (Lie et al., 2008, 2010), compared to our Latvian study,

and thus the results from these studies might not be compara-

ble. It should also be noted that in the previous research, con-

centrating on female facial attractiveness and MHC

heterozygosity, only MHC I loci (Coetzee et al., 2007) or

microsatellites in linkage disequilibrium with MHC class I loci
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A and B or MHC class II locus DR (Lie et al., 2008, 2010) have

been studied, while in our study, the females were genotyped

for MHC II DQ loci. Thus MHC class II DQ genes are the only

MHC genes demonstrated to show a positive relationship

between MHC heterozygosity and female facial attractiveness.

In addition to connecting overall MHC heterozygosity

weakly to attractiveness, our further analyses showed that het-

erozygosity in the MHC class II gene DQB1 had the strongest

effect on attractiveness in both males and females. From the

loci studied, only DQB1 had a significant effect on facial

attractiveness, after controlling for age, sex and fat percent,

and none of the genes had an effect on male body attractive-

ness. Indeed, the DQB1 heterozygotes were rated significantly

more facially attractive than the DQB1 homozygotes. It should

be noted that in previous MHC-related mate choice research,

only a few studies (Ihara et al., 2000; Jacob et al., 2002; Ober

et al., 1997) have genotyped MHC class II DQ loci, showing

allele sharing affecting odor attractiveness (Jacob et al., 2002)

and disassortative mating in relation to MHC in couples (Ober

et al., 1997), but not an association between MHC heterozyg-

osity and attractiveness. Thus, even though MHC heterozygos-

ity has been connected to male attractiveness earlier (Lie et al.,

2008; Roberts, Little, Gosling, Perrett, et al., 2005), this study

is the first to study the heterozygosity in MHC class II DQ loci

and show a positive relationship between facial attractiveness

and heterozygosity in MHC class II DQB1 locus in both sexes.

The connection of MHC class II DQB1 locus to facial attrac-

tiveness indicates a difference between the effects of the two

main MHC class loci on the immune function related to attrac-

tiveness. HLA-DQ is a cell surface receptor protein found on

antigen presenting cells. It is an ab heterodimer, where the a
and b chains are encoded by two loci, HLA-DQA1 and HLA-

DQB1, so it is likely that heterozygosity in the b chain is more

closely associated with facial appearance in our population.

While foreign antigens derived from pathogens are presented

via the DQ protein by phagocytosing cells of immune defense

like dendritic cells and macrophages, the helper T-cells are

stimulated to proliferate and can signal B-cells to produce anti-

bodies (Klein & Sato, 2000b). But DQ is also involved in

presenting common self-antigens and presenting those antigens

to the immune system in order to develop tolerance from a very

young age. When the tolerance to self proteins is lost, DQ may

become involved in autoimmune disease (Klein & Sato,

2000a). MHC class II loci, including DQ, have indeed been

connected to the risk of insulin dependent diabetes (Kiviniemi

et al., 2007) as well as coeliac disease (Skrabl-Baumgartner

et al., 2017) but also protection against hepatitis B virus infec-

tion (Thursz et al., 1997). Thus it is possible that heterozygosity

in specifically DQB1 locus can affect antibody production and

as well be connected to facial attractiveness (Rantala et al.,

2013). Furthermore, in male rhesus macaques, DQB1 hetero-

zygosity has been connected to increased reproductive success

(Sauermann et al., 2001). In this study MHC class II loci DRB1

and DQA1 did not affect attractiveness nor did heterozygosity

at male MHC class I loci, although the differences in the gen-

otyping method between the two MHC classes could have

affected the final outcome. While all of the research related

to MHC heterozygosity and facial attractiveness, some of

which show a positive relationship between MHC heterozyg-

osity and attractiveness in males (Lie et al., 2008; Roberts,

Little, Gosling, Perrett, et al., 2005), has concentrated on loci

other than DQB1 (Havlicek & Roberts, 2009), it would be

interesting to see whether DQB1 shows a connection between

MHC heterozygosity and facial attractiveness in other popula-

tions as well.

The association between MHC heterozygosity and attrac-

tiveness, found in this study, refers to a weak overall associa-

tion of MHC heterozygosity with visual characters, although

one must not rule out the possibility of the mate preferences to

be connected to overall genetic diversity instead of MHC diver-

sity. However, some studies have shown that MHC heterozyg-

osity does not correlate with overall genomic heterozygosity

and seems to affect mate choice independently (Carrington

et al., 1999; Lie et al., 2008). Thus, we can state that this study

provides partial support to the “good genes as heterozygosity”

-hypothesis suggesting that MHC related mate choice should

provide the offspring the best possible immune defense

improving their fitness (Brown, 1998). The benefits of optimiz-

ing MHC heterozygosity, without extreme outbreeding, can be

related to the ability of MHC heterozygotes to present more

antigens to T-cells than MHC homozygotes, enhancing the

MHC heterozygotes’ immune response (Havlicek & Roberts,

2009). While MHC heterozygosity can be inherited, when mul-

tiple alleles are considered (Mitton et al., 1993), by selecting

attractive mates signaling MHC heterozygosity, one might gain

benefits to offspring indirectly via the good genes but also

directly via for example high quality resources and reduced

risk of transmitted diseases (Fisher, 1915; Kirkpatrick & Ryan,

1991; Lie et al., 2008).

It should also be highlighted that the initially positive rela-

tionship between attractiveness and MHC heterozygosity in our

male data, is mediated by age and fat percent. While the covar-

iation of age with heterozygosity, is most likely a coincidence

arising from the small number of homozygotes, the negative

association of fat percent with MHC heterozygosity and attrac-

tiveness needs further consideration. Indeed, previous research

has shown high body fat proportion to impair attractiveness of

both male bodies and faces (Dixson et al., 2007a; Dixson et al.,

2007b; Windhager et al., 2011) and adiposity has been shown

to play a crucial role in the immune function (Karlsson & Beck,

2010). It has also been shown that antibody production taking

place by B-cell derived plasma cells, after interaction between

B cells with helper T-cells, can be connected to both adiposity

and facial attractiveness (Rantala et al., 2013). Helper T-cells,

on the other hand, are activated by the complex formed by the

antigen derived peptide presented by MHC class II molecule,

either DR, DQ or DP. In general, obesity has been shown to

increase the risk for infectious diseases like pneumonia (Baik

et al., 2000) and influenza (Louie et al., 2011), through

impaired immune function, including a decreased response to

antigen stimulation (Karlsson & Beck, 2010). Strongly

decreased response to antigen stimulation, would abolish the
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benefits of heterozygosity and rare alleles in the MHC area.

Clearly, more research is needed on the mechanism how fat

percent in males is related to MHC gene function and if this

mechanism is affected by sex hormones, such as testosterone.

As a conclusion, this study gives partial support to the idea

of MHC heterozygosity playing a part in mate choice related to

attractiveness. However, in our study, overall MHC heterozyg-

osity is only initially positively related to facial attractiveness

in both sexes. In males the relationship between MHC hetero-

zygosity and attractiveness is mostly explained by age and fat

percent, which might diminish the benefit of MHC heterozyg-

osity through decreasing immune response (Karlsson & Beck,

2010). In addition, we show that when comparing loci, class II

DQB1 has an effect on facial attractiveness possibly linking

attractiveness to autoimmune diseases. However, the mechan-

ism, how different MHC genotypes, especially on locus DQB1,

might affect visual traits in males and females, and if these

patterns are evident across cultures, is still unclear.
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