144 research outputs found

    Day-side z'-band emission and eccentricity of Wasp-12b

    Get PDF
    We report the detection of the eclipse of the very-hot Jupiter WASP-12b via z'-band time-series photometry obtained with the 3.5-meter ARC telescope at Apache Point Observatory. We measure a decrease in flux of 0.082+/-0.015% during the passage of the planet behind the star. That planetary flux is equally well reproduced by atmospheric models with and without extra absorbers, and blackbody models with f > 0.585+/-0.080. It is therefore necessary to measure the planet at other wavelengths to further constrain its atmospheric properties. The eclipse appears centered at phase = 0.5100 (+0.0072,-0.0061), consistent with an orbital eccentricity of |e cos w| = 0.016 (+0.011,-0.009) (see note at end of Section 4). If the orbit of the planet is indeed eccentric, the large radius of WASP-12b can be explained by tidal heating.Comment: One more author added. Version accepted for publication on ApJ

    IRIS: A Generic Three-Dimensional Radiative Transfer Code

    Full text link
    We present IRIS, a new generic three-dimensional (3D) spectral radiative transfer code that generates synthetic spectra, or images. It can be used as a diagnostic tool for comparison with astrophysical observations or laboratory astrophysics experiments. We have developed a 3D short-characteristic solver that works with a 3D nonuniform Cartesian grid. We have implemented a piecewise cubic, locally monotonic, interpolation technique that dramatically reduces the numerical diffusion effect. The code takes into account the velocity gradient effect resulting in gradual Doppler shifts of photon frequencies and subsequent alterations of spectral line profiles. It can also handle periodic boundary conditions. This first version of the code assumes Local Thermodynamic Equilibrium (LTE) and no scattering. The opacities and source functions are specified by the user. In the near future, the capabilities of IRIS will be extended to allow for non-LTE and scattering modeling. IRIS has been validated through a number of tests. We provide the results for the most relevant ones, in particular a searchlight beam test, a comparison with a 1D plane-parallel model, and a test of the velocity gradient effect. IRIS is a generic code to address a wide variety of astrophysical issues applied to different objects or structures, such as accretion shocks, jets in young stellar objects, stellar atmospheres, exoplanet atmospheres, accretion disks, rotating stellar winds, cosmological structures. It can also be applied to model laboratory astrophysics experiments, such as radiative shocks produced with high power lasers.Comment: accepted for publication in A&A; 17 pages, 9 figures, 2 table

    Optical Albedo Theory of Strongly-Irradiated Giant Planets: The Case of HD 209458b

    Full text link
    We calculate a new suite of albedo models for close-in extrasolar giant planets and compare with the recent stringent upper limit for HD 209458b of Rowe et al. using MOST. We find that all models without scattering clouds are consistent with this optical limit. We explore the dependence on wavelength and waveband, metallicity, the degree of heat redistribution, and the possible presence of thermal inversions and find a rich diversity of behaviors. Measurements of transiting extrasolar giant planets (EGPs) at short wavelengths by MOST, Kepler, and CoRoT, as well as by proposed dedicated multi-band missions, can complement measurements in the near- and mid-IR using {\it Spitzer} and JWST. Collectively, such measurements can help determine metallicity, compositions, atmospheric temperatures, and the cause of thermal inversions (when they arise) for EGPs with a broad range of radii, masses, degrees of stellar insolation, and ages. With this paper, we reappraise and highlight the diagnostic potential of albedo measurements of hot EGPs shortward of \sim1.3 μ\mum.Comment: 6 pages, 1 table, 1 color figure; accepted to the Astrophysical Journa

    Origin of the wide-angle hot H2 in DG Tauri: New insight from SINFONI spectro-imaging

    Full text link
    We wish to test the origins proposed for the extended hot H2 at 2000K around the atomic jet from the T Tauri star DGTau, in order to constrain the wide-angle wind structure and the possible presence of an MHD disk wind. We present flux calibrated IFS observations in H2 1-0 S(1) obtained with SINFONI/VLT. Thanks to spatial deconvolution by the PSF and to accurate correction for uneven slit illumination, we performed a thorough analysis and modeled the morphology, kinematics, and surface brightness. We also compared our results with studies in [FeII], [OI], and FUV-pumped H2. The limb-brightened H2 emission in the blue lobe is strikingly similar to FUV-pumped H2 imaged 6yr later, confirming that they trace the same hot gas and setting an upper limit of 12km/s on any expansion proper motion. The wide-angle H2 rims are at lower blueshifts than probed by narrow long-slit spectra. We confirm that they extend to larger angle and to lower speed the onion-like velocity structure observed in optical atomic lines. The latter is shown to be steady over more/equal than 4yr but undetected in [FeII] by SINFONI, probably due to strong iron depletion. The H2 rim thickness less/equal than 14AU rules out excitation by C-shocks, and J-shock speeds are constrained to 10km/s. We find that explaining the H2 wide-angle emission with a shocked layer requires either a recent outburst (15yr) into a pre-existing ambient outflow or an excessive wind mass flux. A slow photoevaporative wind from the dense irradiated disk surface and an MHD disk wind heated by ambipolar diffusion seem to be more promising and need to be modeled in more detail

    Tidal Heating Models for the Radii of the Inflated Transiting Giant Planets WASP-4b, WASP-6b, WASP-12b, and TrES-4

    Full text link
    In order to explain the inflated radii of some transiting extrasolar giant planets, we investigate a tidal heating scenario for the inflated planets WASP-4b, WASP-6b, WASP-12b, WASP-15b, and TrES-4. To do so, we assume that they retain a nonzero eccentricity, possibly by dint of continuing interaction with a third body. We calculate the amount of extra heating in the envelope that is then required to fit the radius of each planet, and we explore how this additional power depends on the planetary atmospheric opacity and on the mass of a heavy-element central core. There is a degeneracy between the core mass McoreM_{\rm core} and the heating E˙heating\dot{E}_{\rm heating}. Therefore, in the case of tidal heating, there is for each planet a range of the couple {Mcore,e2/Qp}\{M_{\rm core},e^2/Q'_p\} that can lead to the same radius, where QpQ'_p is the tidal dissipation factor and ee is the eccentricity. With this in mind, we also investigate the case of the non-inflated planet HAT-P-12b, which can admit solutions combining a heavy-element core and tidal heating. A substantial improvement of the measured eccentricities of such planetary systems could simplify this degeneracy by linking the two unknown parameters {Mcore,Qp}\{M_{\rm core},Q'_p\}. Further independent constraints on either of these parameters would, through our calculations, constrain the other.Comment: Accepted in ApJ; 17 pages, 3 figures, 6 tables (emulateapj format); expanded explanatory tex

    Explorations into the Viability of Coupled Radius-Orbit Evolutionary Models for Inflated Planets

    Full text link
    The radii of some transiting extrasolar giant planets are larger than would be expected by the standard theory. We address this puzzle with the model of coupled radius-orbit tidal evolution developed by \citet{Ibgui_and_Burrows_2009}. The planetary radius is evolved self-consistently with orbital parameters, under the influence of tidal torques and tidal dissipation in the interior of the planet. A general feature of this model, which we have previously demonstrated in the generic case, is that a possible transient inflation of the planetary radius can temporarily interrupt its standard monotonic shrinking and can lead to the inflated radii that we observe. In particular, a bloated planet with even a circular orbit may still be inflated due to an earlier episode of tidal heating. We have modified our model to include an orbital period dependence of the tidal dissipation factor in the star, QPγQ'_{\ast} \propto P^{\gamma}, 1γ1-1 \leqslant \gamma \leqslant 1. With this model, we search, for a tidally heated planet, orbital and radius evolutionary tracks that fall within the observational limits of the radius, the semimajor axis, and the eccentricity of the planet in its current estimated age range. We find that, for some inflated planets (WASP-6b and WASP-15b), there are such tracks; for another (TrES-4), there are none; and for still others (WASP-4b and WASP-12b), there are such tracks, but our model might imply that we are observing the planets at a special time. Finally, we stress that there is a two to three order-of-magnitude timescale uncertainty of the inspiraling phase of the planet into its host star, arising from uncertainties in the tidal dissipation factor in the star QQ'_{\ast}.Comment: Submitted to ApJ; 13 pages, 3 figures, 2 tables; (emulateapj format

    Ohmic Dissipation in the Atmospheres of Hot Jupiters

    Full text link
    Hot Jupiter atmospheres exhibit fast, weakly-ionized winds. The interaction of these winds with the planetary magnetic field generates drag on the winds and leads to ohmic dissipation of the induced electric currents. We study the magnitude of ohmic dissipation in representative, three-dimensional atmospheric circulation models of the hot Jupiter HD 209458b. We find that ohmic dissipation can reach or exceed 1% of the stellar insolation power in the deepest atmospheric layers, in models with and without dragged winds. Such power, dissipated in the deep atmosphere, appears sufficient to slow down planetary contraction and explain the typically inflated radii of hot Jupiters. This atmospheric scenario does not require a top insulating layer or radial currents that penetrate deep in the planetary interior. Circulation in the deepest atmospheric layers may actually be driven by spatially non-uniform ohmic dissipation. A consistent treatment of magnetic drag and ohmic dissipation is required to further elucidate the consequences of magnetic effects for the atmospheres and the contracting interiors of hot Jupiters.Comment: Accepted to the Astrophysical Journa

    Radiative accretion shocks along nonuniform stellar magnetic fields in classical T Tauri stars

    Get PDF
    (abridged) AIMS. We investigate the dynamics and stability of post-shock plasma streaming along nonuniform stellar magnetic fields at the impact region of accretion columns. We study how the magnetic field configuration and strength determine the structure, geometry, and location of the shock-heated plasma. METHODS. We model the impact of an accretion stream onto the chromosphere of a CTTS by 2D axisymmetric magnetohydrodynamic simulations. Our model takes into account the gravity, the radiative cooling, and the magnetic-field-oriented thermal conduction. RESULTS. The structure, stability, and location of the shocked plasma strongly depend on the configuration and strength of the magnetic field. For weak magnetic fields, a large component of B may develop perpendicular to the stream at the base of the accretion column, limiting the sinking of the shocked plasma into the chromosphere. An envelope of dense and cold chromospheric material may also develop around the shocked column. For strong magnetic fields, the field configuration determines the position of the shock and its stand-off height. If the field is strongly tapered close to the chromosphere, an oblique shock may form well above the stellar surface. In general, a nonuniform magnetic field makes the distribution of emission measure vs. temperature of the shocked plasma lower than in the case of uniform magnetic field. CONCLUSIONS. The initial strength and configuration of the magnetic field in the impact region of the stream are expected to influence the chromospheric absorption and, therefore, the observability of the shock-heated plasma in the X-ray band. The field strength and configuration influence also the energy balance of the shocked plasma, its emission measure at T > 1 MK being lower than expected for a uniform field. The above effects contribute in underestimating the mass accretion rates derived in the X-ray band.Comment: 11 pages, 11 Figures; accepted for publication on A&A. Version with full resolution images can be found at http://www.astropa.unipa.it/~orlando/PREPRINTS/sorlando_accretion_shocks.pd

    Escaping Particle fluxes in the atmospheres of close-in exoplanets: I. model of hydrogen

    Full text link
    A multi-fluid model for an atomic hydrogen-proton mixture in the upper atmosphere of extrosolar planet is presented when the continuity and momentum equations of each component have been already solved with an energy equation. The particle number density, the temperature distribution and the structure of velocity can be found by means of the model. We chose two special objects, HD 209458b and HD 189733b, as discussion samples and the conclusion is that their mass loss rates predicted by the model are in accordance with those of observation. The most important physical process in coupling each component is charge exchange which tightly couples atomic hydrogen with protons. Most of the hydrogen escaping from hot Jupiters is protons, especially in young star-planet system. We found that the single-fluid model can describe the escape of particles when the mass loss rate is higher than a few times 10910^{9} g/s while below 10910^{9} g/s the multi-fluid model is more suitable for it due to the decoupling of particles. We found that the predicted mass loss rates of HD 189733b with the assumption of energy-limit are a factor of 10 larger than that calculated by our models due to the high ionization degree. For the ionized wind which is almost compose of protons, the assumption of energy-limit is no longer effective. We fitted the mass loss rates of the ionized wind as a function of FUVF_{UV} by calculating the variation of the mass loss rates with UV fluxes.Comment: 35 pages, 6 figures, submitted to Ap
    corecore