669 research outputs found

    Options for managing alkaline steel slag leachate: A life cycle assessment

    Get PDF
    Management of steel slag (a major by-product of the steel industry) includes the treatment of highly alkaline leachate (pH > 11.5) from rainwater infiltration of slag deposits to prevent adverse impact upon surface or ground waters. This study aims to compare different treatment options for steel slag leachate through a life cycle assessment (LCA). Five options were compared: active treatment by acid dosing (A-H2SO4), active treatment by carbon dioxide dosing (A-CO2), active treatment by calcium chloride dosing (A-CaCl2), passive treatment by cascade and reedbeds with pumping (P-P), and passive treatment by cascade and reedbeds in a gravity-driven configuration (P-G). The functional unit was 1 m3 of treated leachate with pH < 9, considering 24 h and 365 days of operating, maintenance operations every year, and service life of 20 years. Inventory data were obtained from project designers, commercial suppliers, laboratory data and field tests. The environmental impacts were calculated in OpenLCA using the ELCD database and ILCD 2011 method, covering twelve impact categories. The A-CaCl2 option scored worse than all other treatments for all considered environmental impact categories. Regarding human toxicity, A-CaCl2 impact was 1260 times higher than the lowest impact option (A-CO2) for carcinogenics and 53 times higher for non-carcinogenics (A-H2SO4). For climate change, the lowest impact was calculated for P-G < P-P < A-H2SO4 < A-CO2 < A-CaCl2, while for particulate matter/respiratory inorganics, the options ranked as follows P-G < P-P < A-CO2 < A-H2SO4 < A-CaCl2. The major contributor to these impact categories was the Solvay process to produce CaCl2. Higher uncertainty was associated with the categories particulate matter formation, climate change and human toxicity, as they are driven by indirect emissions from electricity and chemicals production. Both passive treatment options had better environmental performance than the active treatment options. Potential design measures to enhance environmental performance of the treatments regarding metal removal and recovery are discussed and could inform operational management at active and legacy steel slag disposal sites

    Mechanism of Vanadium Leaching during Surface Weathering of Basic Oxygen Furnace Steel Slag Blocks: A Microfocus X-ray Absorption Spectroscopy and Electron Microscopy Study

    Get PDF
    © 2017 American Chemical Society. Basic oxygen furnace (BOF) steelmaking slag is enriched in potentially toxic V which may become mobilized in high pH leachate during weathering. BOF slag was weathered under aerated and air-excluded conditions for 6 months prior to SEM/EDS and μXANES analysis to determine V host phases and speciation in both primary and secondary phases. Leached blocks show development of an altered region in which free lime and dicalcium silicate phases were absent and Ca-Si-H was precipitated (CaCO 3 was also present under aerated conditions). μXANES analyses show that V was released to solution as V(V) during dicalcium silicate dissolution and some V was incorporated into neo-formed Ca-Si-H. Higher V concentrations were observed in leachate under aerated conditions than in the air-excluded leaching experiment. Aqueous V concentrations were controlled by Ca 3 (VO 4 ) 2 solubility, which demonstrate an inverse relationship between Ca and V concentrations. Under air-excluded conditions Ca concentrations were controlled by dicalcium silicate dissolution and Ca-Si-H precipitation, leading to relatively high Ca and correspondingly low V concentrations. Formation of CaCO 3 under aerated conditions provided a sink for aqueous Ca, allowing higher V concentrations limited by kinetic dissolution rates of dicalcium silicate. Thus, V release may be slowed by the precipitation of secondary phases in the altered region, improving the prospects for slag reuse

    Toward a simulation approach for alkene ring-closing metathesis : scope and limitations of a model for RCM

    Get PDF
    A published model for revealing solvent effects on the ring-closing metathesis (RCM) reaction of di-Et diallylmalonate 7 has been evaluated over a wider range of conditions, to assess its suitability for new applications. Unfortunately, the model is too flexible and the published rate consts. do not agree with exptl. studies in the literature. However, by fixing the values of important rate consts. and restricting the concn. ranges studied, useful conclusions can be drawn about the relative rates of RCM of different substrates, precatalyst concn. can be simulated accurately and the effect of precatalyst loading can be anticipated. Progress has also been made toward applying the model to precatalyst evaluation, but further modifications to the model are necessary to achieve much broader aims

    Latewood Ring Width Reveals CE 1734 Felling Dates for Walker House Timbers In Tupelo, Mississippi, USA

    Get PDF
    Dendroarchaeology is under-represented in the Gulf Coastal Plain region of the United States (US), and at present, only three published studies have precision dated a collection of 18th–19th-century structures. In this study, we examined the tree-ring data from pine, poplar, and oak timbers used in the Walker House in Tupelo, Mississippi. The Walker House was constructed ca. the mid-1800s with timbers that appeared to be recycled from previous structures. In total, we examined 30 samples (16 pines, 8 oaks, and 6 poplars) from the attic and crawlspace. We cross-dated latewood ring growth from the attic pine samples to the period 1541–1734 (r = 0.52, t = 8.43, p \u3c 0.0001) using a 514-year longleaf pine (Pinus palustris Mill.) latewood reference chronology from southern Mississippi. The crawlspace oak samples produced a 57-year chronology that we dated against a white oak (Quercus alba L.) reference chronology from northeast Alabama to the period 1765–1822 (r = 0.36, t = 2.83, p \u3c 0.01). We were unable to cross-date the six poplar samples due to a lack of poplar reference chronologies in the region. Our findings have two important implications: (1) the pine material dated to 1734 represents the oldest dendroarchaeology-confirmed dating match for construction materials in the southeastern US, and (2) cross-dating latewood growth for southeastern US pine species produced statistically significant results, whereas total ring width failed to produce significant dating results

    Cutaneous hypersensitivity reactions to freshwater cyanobacteria – human volunteer studies

    Get PDF
    BACKGROUND: Pruritic skin rashes associated with exposure to freshwater cyanobacteria are infrequently reported in the medical and scientific literature, mostly as anecdotal and case reports. Diagnostic dermatological investigations in humans are also infrequently described. We sought to conduct a pilot volunteer study to explore the potential for cyanobacteria to elicit hypersensitivity reactions. METHODS: A consecutive series of adult patients presenting for diagnostic skin patch testing at a hospital outpatient clinic were invited to participate. A convenience sample of volunteers matched for age and sex was also enrolled. Patches containing aqueous suspensions of various cyanobacteria at three concentrations were applied for 48 hours; dermatological assessment was made 48 hours and 96 hours after application. RESULTS: 20 outpatients and 19 reference subjects were recruited into the study. A single outpatient produced unequivocal reactions to several cyanobacteria suspensions; this subject was also the only one of the outpatient group with a diagnosis of atopic dermatitis. No subjects in the reference group developed clinically detectable skin reactions to cyanobacteria. CONCLUSION: This preliminary clinical study demonstrates that hypersensitivity reactions to cyanobacteria appear to be infrequent in both the general and dermatological outpatient populations. As cyanobacteria are widely distributed in aquatic environments, a better appreciation of risk factors, particularly with respect to allergic predisposition, may help to refine health advice given to people engaging in recreational activities where nuisance cyanobacteria are a problem

    The expression of ovine placental lactogen, StAR and progesterone-associated steroidogenic enzymes in placentae of overnourished growing adolescent ewes.

    Get PDF
    Overnourishing pregnant adolescent sheep promotes maternal growth but reduces placental mass, lamb birth weight and circulating progesterone. This study aimed to determine whether altered progesterone reflected transcript abundance for StAR (cholesterol transporter) and the steroidogenic enzymes (Cyp11A1, Hsd3b and Cyp17). Circulating and placental expression of ovine placental lactogen (oPL) was also investigated. Adolescent ewes with singleton pregnancies were fed high (H) or moderate (M) nutrient intake diets to restrict or support placental growth. Experiment 1: peripheral progesterone and oPL concentrations were measured in H (n=7) and M (n=6) animals across gestation (days 7-140). Experiment 2: progesterone was measured to mid- (day 81; M: n=11, H: n=13) or late gestation (day 130; M: n=21, H: n=22), placental oPL, StAR and steroidogenic enzymes were measured by qPCR and oPL protein by immunohistochemistry. Experiment 1: in H vs M animals, term placental (

    The UK Crop Microbiome Cryobank: a utility and model for supporting Phytobiomes research

    Get PDF
    Plant microbiomes are the microbial communities essential to the functioning of the phytobiome—the system that consist of plants, their environment, and their associated communities of organisms. A healthy, functional phytobiome is critical to crop health, improved yields and quality food. However, crop microbiomes are relatively under-researched, and this is associated with a fundamental need to underpin phytobiome research through the provision of a supporting infrastructure. The UK Crop Microbiome Cryobank (UKCMC) project is developing a unique, integrated and open-access resource to enable the development of solutions to improve soil and crop health. Six economically important crops (Barley, Fava Bean, Oats, Oil Seed Rape, Sugar Beet and Wheat) are targeted, and the methods as well as data outputs will underpin research activity both in the UK and internationally. This manuscript describes the approaches being taken, from characterisation, cryopreservation and analysis of the crop microbiome through to potential applications. We believe that the model research framework proposed is transferable to different crop and soil systems, acting not only as a mechanism to conserve biodiversity, but as a potential facilitator of sustainable agriculture systems

    Internal and external cooling methods and their effect on body temperature, thermal perception and dexterity

    Get PDF
    © 2018 The Authors. Published by PLOS. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1371/journal.pone.0191416© 2018 Maley et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Objective The present study aimed to compare a range of cooling methods possibly utilised by occupational workers, focusing on their effect on body temperature, perception and manual dexterity. Methods Ten male participants completed eight trials involving 30 min of seated rest followed by 30 min of cooling or control of no cooling (CON) (34C, 58% relative humidity). The cooling methods utilised were: ice cooling vest (CV0), phase change cooling vest melting at 14C (CV14), evaporative cooling vest (CVEV), arm immersion in 10C water (AI), portable water-perfused suit (WPS), heliox inhalation (HE) and ice slushy ingestion (SL). Immediately before and after cooling, participants were assessed for fine (Purdue pegboard task) and gross (grip and pinch strength) manual dexterity. Rectal and skin temperature, as well as thermal sensation and comfort, were monitored throughout. Results Compared with CON, SL was the only method to reduce rectal temperature (P = 0.012). All externally applied cooling methods reduced skin temperature (P0.05). Conclusion The present study observed that ice ingestion or ice applied to the skin produced the greatest effect on rectal and skin temperature, respectively. AI should not be utilised if workers require subsequent fine manual dexterity. These results will help inform future studies investigating appropriate pre-cooling methods for the occupational worker.This project is financially supported by the US Government through the Technical Support Working Group within the Combating Terrorism Technical Support Office.Published versio

    Genome-wide protein QTL mapping identifies human plasma kallikrein as a post-translational regulator of serum uPAR levels

    Get PDF
    The soluble cleaved urokinase plasminogen activator receptor (scuPAR) is a circulating protein detected in multiple diseases, including various cancers, cardiovascular disease, and kidney disease, where elevated levels of scuPAR have been associated with worsening prognosis and increased disease aggressiveness. We aimed to identify novel genetic and biomolecular mechanisms regulating scuPAR levels. Elevated serum scuPAR levels were identified in asthma (n=514) and chronic obstructive pulmonary disease (COPD; n=219) cohorts when compared to controls (n=96). In these cohorts, a genome-wide association study of serum scuPAR levels identified a human plasma kallikrein gene (KLKB1) promoter polymorphism (rs4253238) associated with serum scuPAR levels in a control/asthma population (P=1.17×10−7), which was also observed in a COPD population (combined P=5.04×10−12). Using a fluorescent assay, we demonstrated that serum KLKB1 enzymatic activity was driven by rs4253238 and is inverse to scuPAR levels. Biochemical analysis identified that KLKB1 cleaves scuPAR and negates scuPAR's effects on primary human bronchial epithelial cells (HBECs) in vitro. Chymotrypsin was used as a proproteolytic control, while basal HBECs were used as a control to define scuPAR-driven effects. In summary, we reveal a novel post-translational regulatory mechanism for scuPAR using a hypothesis-free approach with implications for multiple human diseases
    corecore