428 research outputs found

    Emergence of structural and dynamical properties of ecological mutualistic networks

    Full text link
    Mutualistic networks are formed when the interactions between two classes of species are mutually beneficial. They are important examples of cooperation shaped by evolution. Mutualism between animals and plants plays a key role in the organization of ecological communities. Such networks in ecology have generically evolved a nested architecture independent of species composition and latitude - specialists interact with proper subsets of the nodes with whom generalists interact. Despite sustained efforts to explain observed network structure on the basis of community-level stability or persistence, such correlative studies have reached minimal consensus. Here we demonstrate that nested interaction networks could emerge as a consequence of an optimization principle aimed at maximizing the species abundance in mutualistic communities. Using analytical and numerical approaches, we show that because of the mutualistic interactions, an increase in abundance of a given species results in a corresponding increase in the total number of individuals in the community, as also the nestedness of the interaction matrix. Indeed, the species abundances and the nestedness of the interaction matrix are correlated by an amount that depends on the strength of the mutualistic interactions. Nestedness and the observed spontaneous emergence of generalist and specialist species occur for several dynamical implementations of the variational principle under stationary conditions. Optimized networks, while remaining stable, tend to be less resilient than their counterparts with randomly assigned interactions. In particular, we analytically show that the abundance of the rarest species is directly linked to the resilience of the community. Our work provides a unifying framework for studying the emergent structural and dynamical properties of ecological mutualistic networks.Comment: 10 pages, 4 figure

    Evaluation of Daily Low-Dose Prednisolone During Upper Respiratory Tract Infection to Prevent Relapse in Children With Relapsing Steroid-Sensitive Nephrotic Syndrome: The PREDNOS 2 Randomized Clinical Trial

    Get PDF
    Importance: In children with corticosteroid-sensitive nephrotic syndrome, many relapses are triggered by upper respiratory tract infections. Four small studies found that administration of daily low-dose prednisolone for 5 to 7 days at the time of an upper respiratory tract infection reduced the risk of relapse, but the generalizability of their findings is limited by location of the studies and selection of study population. / Objective: To investigate the use of daily low-dose prednisolone for the treatment of upper respiratory tract infection-related relapses. / Design, Setting, and Participants: This double-blind, placebo-controlled randomized clinical trial (Prednisolone in Nephrotic Syndrome [PREDNOS] 2) evaluated 365 children with relapsing steroid-sensitive nephrotic syndrome with and without background immunosuppressive treatment at 122 pediatric departments in the UK from February 1, 2013, to January 31, 2020. Data from the modified intention-to-treat population were analyzed from July 1, 2020, to December 31, 2020. / Interventions: At the start of an upper respiratory tract infection, children received 6 days of prednisolone, 15 mg/m2 daily, or matching placebo preparation. Those already taking alternate-day prednisolone rounded their daily dose using trial medication to the equivalent of 15 mg/m2 daily or their alternate-day dose, whichever was greater. / Main Outcomes and Measures: The primary outcome was the incidence of first upper respiratory tract infection-related relapse. Secondary outcomes included overall rate of relapse, changes in background immunosuppressive treatment, cumulative dose of prednisolone, rates of serious adverse events, incidence of corticosteroid adverse effects, and quality of life. / Results: The modified intention-to-treat analysis population comprised 271 children (mean [SD] age, 7.6 [3.5] years; 174 [64.2%] male), with 134 in the prednisolone arm and 137 in the placebo arm. The number of patients experiencing an upper respiratory tract infection-related relapse was 56 of 131 (42.7%) in the prednisolone arm and 58 of 131 (44.3%) in the placebo arm (adjusted risk difference, -0.02; 95% CI, -0.14 to 0.10; P = .70). No evidence was found that the treatment effect differed according to background immunosuppressive treatment. No significant differences were found in secondary outcomes between the treatment arms. A post hoc subgroup analysis assessing the primary outcome in 54 children of South Asian ethnicity (risk ratio, 0.66; 95% CI, 0.40-1.10) vs 208 children of other ethnicity (risk ratio, 1.11; 95% CI, 0.81-1.54) found no difference in efficacy of intervention in those of South Asian ethnicity (test for interaction P = .09). / Conclusions and Relevance: The results of PREDNOS 2 suggest that administering 6 days of daily low-dose prednisolone at the time of an upper respiratory tract infection does not reduce the risk of relapse of nephrotic syndrome in children in the UK. Further work is needed to investigate interethnic differences in treatment response. / Trial Registration: isrctn.org / Identifier: ISRCTN10900733; EudraCT 2012-003476-39

    Heritability of Attractiveness to Mosquitoes

    Get PDF
    Female mosquitoes display preferences for certain individuals over others, which is determined by differences in volatile chemicals produced by the human body and detected by mosquitoes. Body odour can be controlled genetically but the existence of a genetic basis for differential attraction to insects has never been formally demonstrated. This study investigated heritability of attractiveness to mosquitoes by evaluating the response of Aedes aegypti (=Stegomyia aegypti) mosquitoes to odours from the hands of identical and non-identical twins in a dual-choice assay. Volatiles from individuals in an identical twin pair showed a high correlation in attractiveness to mosquitoes, while non-identical twin pairs showed a significantly lower correlation. Overall, there was a strong narrow-sense heritability of 0.62 (SE 0.124) for relative attraction and 0.67 (0.354) for flight activity based on the average of ten measurements. The results demonstrate an underlying genetic component detectable by mosquitoes through olfaction. Understanding the genetic basis for attractiveness could create a more informed approach to repellent development

    Organism-sediment interactions govern post-hypoxia recovery of ecosystem functioning

    Get PDF
    Hypoxia represents one of the major causes of biodiversity and ecosystem functioning loss for coastal waters. Since eutrophication-induced hypoxic events are becoming increasingly frequent and intense, understanding the response of ecosystems to hypoxia is of primary importance to understand and predict the stability of ecosystem functioning. Such ecological stability may greatly depend on the recovery patterns of communities and the return time of the system properties associated to these patterns. Here, we have examined how the reassembly of a benthic community contributed to the recovery of ecosystem functioning following experimentally-induced hypoxia in a tidal flat. We demonstrate that organism-sediment interactions that depend on organism size and relate to mobility traits and sediment reworking capacities are generally more important than recovering species richness to set the return time of the measured sediment processes and properties. Specifically, increasing macrofauna bioturbation potential during community reassembly significantly contributed to the recovery of sediment processes and properties such as denitrification, bedload sediment transport, primary production and deep pore water ammonium concentration. Such bioturbation potential was due to the replacement of the small-sized organisms that recolonised at early stages by large-sized bioturbating organisms, which had a disproportionately stronger influence on sediment. This study suggests that the complete recovery of organism-sediment interactions is a necessary condition for ecosystem functioning recovery, and that such process requires long periods after disturbance due to the slow growth of juveniles into adult stages involved in these interactions. Consequently, repeated episodes of disturbance at intervals smaller than the time needed for the system to fully recover organism-sediment interactions may greatly impair the resilience of ecosystem functioning.

    International Veterinary Epilepsy Task Force recommendations for a veterinary epilepsy-specific MRI protocol

    Get PDF
    Epilepsy is one of the most common chronic neurological diseases in veterinary practice. Magnetic resonance imaging (MRI) is regarded as an important diagnostic test to reach the diagnosis of idiopathic epilepsy. However, given that the diagnosis requires the exclusion of other differentials for seizures, the parameters for MRI examination should allow the detection of subtle lesions which may not be obvious with existing techniques. In addition, there are several differentials for idiopathic epilepsy in humans, for example some focal cortical dysplasias, which may only apparent with special sequences, imaging planes and/or particular techniques used in performing the MRI scan. As a result, there is a need to standardize MRI examination in veterinary patients with techniques that reliably diagnose subtle lesions, identify post-seizure changes, and which will allow for future identification of underlying causes of seizures not yet apparent in the veterinary literature. There is a need for a standardized veterinary epilepsy-specific MRI protocol which will facilitate more detailed examination of areas susceptible to generating and perpetuating seizures, is cost efficient, simple to perform and can be adapted for both low and high field scanners. Standardisation of imaging will improve clinical communication and uniformity of case definition between research studies. A 6–7 sequence epilepsy-specific MRI protocol for veterinary patients is proposed and further advanced MR and functional imaging is reviewed

    Shrub Invasion Decreases Diversity and Alters Community Stability in Northern Chihuahuan Desert Plant Communities

    Get PDF
    BACKGROUND:Global climate change is rapidly altering species range distributions and interactions within communities. As ranges expand, invading species change interactions in communities which may reduce stability, a mechanism known to affect biodiversity. In aridland ecosystems worldwide, the range of native shrubs is expanding as they invade and replace native grassland vegetation with significant consequences for biodiversity and ecosystem functioning. METHODOLOGY:We used two long-term data sets to determine the effects of shrub encroachment by Larrea tridentata on subdominant community composition and stability in formerly native perennial grassland dominated by Bouteloua eriopoda in New Mexico, USA. PRINCIPAL FINDINGS:Our results indicated that Larrea invasion decreased species richness during the last 100 years. We also found that over shorter temporal scales species-poor subdominant communities in areas invaded by Larrea were less stable (more variable in time) compared to species rich communities in grass-dominated vegetation. Compositional stability increased as cover of Bouteloua increased and decreased as cover of Larrea increased. SIGNIFICANCE:Changes in community stability due to altered interspecific interactions may be one mechanism by which biodiversity declines in grasslands following shrub invasion. As global warming increases, shrub encroachment into native grasslands worldwide will continue to alter species interactions and community stability both of which may lead to a decline in biodiversity

    Association Patterns in Saproxylic Insect Networks in Three Iberian Mediterranean Woodlands and Their Resistance to Microhabitat Loss

    Get PDF
    The assessment of the relationship between species diversity, species interactions and environmental characteristics is indispensable for understanding network architecture and ecological distribution in complex networks. Saproxylic insect communities inhabiting tree hollow microhabitats within Mediterranean woodlands are highly dependent on woodland configuration and on microhabitat supply they harbor, so can be studied under the network analysis perspective. We assessed the differences in interacting patterns according to woodland site, and analysed the importance of functional species in modelling network architecture. We then evaluated their implications for saproxylic assemblages’ persistence, through simulations of three possible scenarios of loss of tree hollow microhabitat. Tree hollow-saproxylic insect networks per woodland site presented a significant nested pattern. Those woodlands with higher complexity of tree individuals and tree hollow microhabitats also housed higher species/interactions diversity and complexity of saproxylic networks, and exhibited a higher degree of nestedness, suggesting that a higher woodland complexity positively influences saproxylic diversity and interaction complexity, thus determining higher degree of nestedness. Moreover, the number of insects acting as key interconnectors (nodes falling into the core region, using core/periphery tests) was similar among woodland sites, but the species identity varied on each. Such differences in insect core composition among woodland sites suggest the functional role they depict at woodland scale. Tree hollows acting as core corresponded with large tree hollows near the ground and simultaneously housing various breeding microsites, whereas core insects were species mediating relevant ecological interactions within saproxylic communities, e.g. predation, competitive or facilitation interactions. Differences in network patterns and tree hollow characteristics among woodland sites clearly defined different sensitivity to microhabitat loss, and higher saproxylic diversity and woodland complexity showed positive relation with robustness. These results highlight that woodland complexity goes hand in hand with biotic and ecological complexity of saproxylic networks, and together exhibited positive effects on network robustness.The research Projects I+D CGL2011-23658 y CGL2012-31669 of the Spanish Minister of Science provided economic support

    Diversity Promotes Temporal Stability across Levels of Ecosystem Organization in Experimental Grasslands

    Get PDF
    The diversity–stability hypothesis states that current losses of biodiversity can impair the ability of an ecosystem to dampen the effect of environmental perturbations on its functioning. Using data from a long-term and comprehensive biodiversity experiment, we quantified the temporal stability of 42 variables characterizing twelve ecological functions in managed grassland plots varying in plant species richness. We demonstrate that diversity increases stability i) across trophic levels (producer, consumer), ii) at both the system (community, ecosystem) and the component levels (population, functional group, phylogenetic clade), and iii) primarily for aboveground rather than belowground processes. Temporal synchronization across studied variables was mostly unaffected with increasing species richness. This study provides the strongest empirical support so far that diversity promotes stability across different ecological functions and levels of ecosystem organization in grasslands

    Factors associated with use of breast cancer screening services by women aged ≥ 40 years in Korea: The Third Korea National Health and Nutrition Examination Survey 2005 (KNHANES III)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite evidence that breast cancer screening reduces morbidity and mortality, until recently most women have not undergone regular mammogram examinations in Korea. We aimed to identify factors associated with use of breast cancer screening services.</p> <p>Methods</p> <p>The Health Promotion Knowledge, Attitude and Practice survey (HP-KAP survey) is part of the Third Korea National Health and Nutrition Examination Survey 2005 (KNHANES III), a nationwide health survey in Korea. Of 7,802 individuals who participated in the HP-KAP survey, 4,292 were female. Of these, 2,583 were women aged at least 40 years and without a history of breast cancer; these women were included in this study. Information about breast cancer screening participation was obtained from the responses to questionnaires. The overall rate of regular breast cancer screening was measured. Factors that affect participation in a breast cancer screening program were identified using multiple logistic regression analysis.</p> <p>Results</p> <p>Among women aged at least 40 years, 30.4% complied with breast screening recommendations. Age of at least 65 years (adjusted odds ratio, aOR 0.61, 95% CI: 0.42-0.88), education level (no [ref], elementary school [aOR 1.51, 95% CI: 1.06-1.47], middle/high school [aOR 1.99, 95% CI: 1.36-2.92], university/higher [aOR 2.73, 95% CI: 1.71-4.35]), private health insurance (aOR 1.42, 95% CI: 1.71-4.35), attitude towards screening tests (aOR 0.18, 95% CI: 0.14-0.23), self-reported health status of 'fair' (aOR 1.26 95% CI: 1.00-1.58), and smoking (aOR 0.52, 95% CI: 0.35-0.79) were associated with the rate of regular breast cancer screening</p> <p>Conclusions</p> <p>To increase the nationwide breast cancer screening rate, more attention should be given to underrepresented groups, particularly the elderly, those with a low education level, smokers, and those with a negative attitude towards screening tests. These issues highlight the need for a new emphasis in health education, promotional campaigns and public health policy aimed at these underrepresented groups.</p
    corecore