894 research outputs found

    HCN ice in Titan's high-altitude southern polar cloud

    Get PDF
    Titan's middle atmosphere is currently experiencing a rapid change of season after northern spring arrived in 2009. A large cloud was observed for the first time above Titan's southern pole in May 2012, at an altitude of 300 km. This altitude previously showed a temperature maximum and condensation was not expected for any of Titan's atmospheric gases. Here we show that this cloud is composed of micron-sized hydrogen cyanide (HCN) ice particles. The presence of HCN particles at this altitude, together with new temperature determinations from mid-infrared observations, indicate a very dramatic cooling of Titan's atmosphere inside the winter polar vortex in early 2012. Such a cooling is completely contrary to previously measured high-altitude warming in the polar vortex, and temperatures are a hundred degrees colder than predicted by circulation models. Besides elucidating the nature of Titan's mysterious polar cloud, these results thus show that post-equinox cooling at the winter pole is much more efficient than previously thought.Comment: Published in Nature on 2 October 2014. This is the author version, before final editing by Natur

    Surprising dissimilarities in a newly formed pair of 'identical twin' stars

    Full text link
    The mass and chemical composition of a star are the primary determinants of its basic physical properties--radius, temperature, luminosity--and how those properties evolve with time. Thus, two stars born at the same time, from the same natal material, and with the same mass are 'identical twins,' and as such might be expected to possess identical physical attributes. We have discovered in the Orion Nebula a pair of stellar twins in a newborn binary star system. Each star in the binary has a mass of 0.41 +/- 0.01 solar masses, identical to within 2 percent. Here we report that these twin stars have surface temperatures that differ by ~300K (~10%), and luminosities that differ by ~50%, both at high confidence level. Preliminary results indicate that the stars' radii also differ, by 5-10%. These surprising dissimilarities suggest that one of the twins may have been delayed by several hundred thousand years in its formation relative to its sibling. Such a delay could only have been detected in a very young, definitively equal-mass binary system3 such as that reported here. Our findings reveal cosmic limits on the age synchronisation of young binary stars, often used as tests for the age calibrations of star-formation models.Comment: Published in Nature, 19 June 200

    Ischemia monitoring in off-pump coronary artery bypass surgery using intravascular near-infrared spectroscopy

    Get PDF
    BACKGROUND: In off-pump coronary artery bypass surgery, manipulations on the beating heart can lead to transient interruptions of myocardial oxygen supply, which can generate an accumulation of oxygen-dependent metabolites in coronary venous blood. The objective of this study was to evaluate the reliability of intravascular near-infrared spectroscopy as a monitoring method to detect possible ischemic events in off-pump coronary artery bypass procedures. METHODS: In 15 elective patients undergoing off-pump myocardial revascularization, intravascular near-infrared spectroscopic analysis of coronary venous blood was performed. NIR signals were transferred through a fiberoptic catheter for signal emission and collection. For data analysis and processing, a miniature spectrophotometer with multivariate statistical package was used. Signal acquisition and analysis were performed before and after revascularization. Spectroscopic data were compared with hemodynamic parameters, electrocardiogram, transesophageal echocardiography and laboratory findings. RESULTS: A conversion to extracorporeal circulation was not necessary. The mean number of grafts per patient was 3.1 ± 0.6. An intraoperative myocardial ischemia was not evident, as indicated by electrocardiogram and transesophageal echocardiography. Continuous spectroscopic analysis showed reproducible absorption spectra of coronary sinus blood. Due to uneventful intraoperative courses, clear ischemia-related changes could be detected in none of the patients. CONCLUSION: Our initial results show that intravascular near-infrared spectroscopy can reliably be used for an online intraoperative ischemia monitoring in off-pump coronary artery bypass surgery. However, the method has to be further evaluated and standardized to determine the role of spectroscopy in off-pump coronary artery bypass surgery

    Bats Use Magnetite to Detect the Earth's Magnetic Field

    Get PDF
    While the role of magnetic cues for compass orientation has been confirmed in numerous animals, the mechanism of detection is still debated. Two hypotheses have been proposed, one based on a light dependent mechanism, apparently used by birds and another based on a “compass organelle” containing the iron oxide particles magnetite (Fe3O4). Bats have recently been shown to use magnetic cues for compass orientation but the method by which they detect the Earth's magnetic field remains unknown. Here we use the classic “Kalmijn-Blakemore” pulse re-magnetization experiment, whereby the polarity of cellular magnetite is reversed. The results demonstrate that the big brown bat Eptesicus fuscus uses single domain magnetite to detect the Earths magnetic field and the response indicates a polarity based receptor. Polarity detection is a prerequisite for the use of magnetite as a compass and suggests that big brown bats use magnetite to detect the magnetic field as a compass. Our results indicate the possibility that sensory cells in bats contain freely rotating magnetite particles, which appears not to be the case in birds. It is crucial that the ultrastructure of the magnetite containing magnetoreceptors is described for our understanding of magnetoreception in animals

    Novel Naphthalene-Based Inhibitors of Trypanosoma brucei RNA Editing Ligase 1

    Get PDF
    African sleeping sickness is a devastating disease that plagues sub-Saharan Africa. Neglected tropical diseases like African sleeping sickness cause significant death and suffering in the world's poorest countries. Current treatments for African sleeping sickness either have high costs, terrible side effects, or limited effectiveness. Consequently, new medicines are urgently needed. RNA editing ligase 1 is an important protein critical for the survival of Trypanosoma brucei, the unicellular parasite that causes African sleeping sickness. In this paper, we describe our recent efforts to use advanced computer techniques to identify chemicals predicted to prevent RNA editing ligase 1 from functioning properly. We subsequently tested our predicted chemicals and confirmed that a number of them inhibited the protein's function. Additionally, one of the chemicals was effective at stopping the growth of the parasite in culture. Although substantial work remains to be done in order to optimize these chemicals so they are effective and safe to use in human patients, the identification of these parasite-killing compounds is nevertheless a valuable step towards finding a better cure for this devastating disease

    Practical three color live cell imaging by widefield microscopy

    Get PDF
    Live cell fluorescence microscopy using fluorescent protein tags derived from jellyfish and coral species has been a successful tool to image proteins and dynamics in many species. Multi-colored aequorea fluorescent protein (AFP) derivatives allow investigators to observe multiple proteins simultaneously, but overlapping spectral properties sometimes require the use of sophisticated and expensive microscopes. Here, we show that the aequorea coerulescens fluorescent protein derivative, PS-CFP2 has excellent practical properties as a blue fluorophore that are distinct from green or red fluorescent proteins and can be imaged with standard filter sets on a widefield microscope. We also find that by widefield illumination in live cells, that PS-CFP2 is very photostable. When fused to proteins that form concentrated puncta in either the cytoplasm or nucleus, PSCFP2 fusions do not artifactually interact with other AFP fusion proteins, even at very high levels of over-expression. PSCFP2 is therefore a good blue fluorophore for distinct three color imaging along with eGFP and mRFP using a relatively simple and inexpensive microscope

    Autism as a disorder of neural information processing: directions for research and targets for therapy

    Get PDF
    The broad variation in phenotypes and severities within autism spectrum disorders suggests the involvement of multiple predisposing factors, interacting in complex ways with normal developmental courses and gradients. Identification of these factors, and the common developmental path into which theyfeed, is hampered bythe large degrees of convergence from causal factors to altered brain development, and divergence from abnormal brain development into altered cognition and behaviour. Genetic, neurochemical, neuroimaging and behavioural findings on autism, as well as studies of normal development and of genetic syndromes that share symptoms with autism, offer hypotheses as to the nature of causal factors and their possible effects on the structure and dynamics of neural systems. Such alterations in neural properties may in turn perturb activity-dependent development, giving rise to a complex behavioural syndrome many steps removed from the root causes. Animal models based on genetic, neurochemical, neurophysiological, and behavioural manipulations offer the possibility of exploring these developmental processes in detail, as do human studies addressing endophenotypes beyond the diagnosis itself

    Ancient hydrothermal seafloor deposits in Eridania basin on Mars

    Get PDF
    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/. The file attached is the Published/publisher’s pdf version of the article

    Alkaline air: changing perspectives on nitrogen and air pollution in an ammonia-rich world

    Get PDF
    Ammonia and ammonium have received less attention than other forms of air pollution, with limited progress in controlling emissions at UK, European and global scales. By contrast, these compounds have been of significant past interest to science and society, the recollection of which can inform future strategies. Sal ammoniac (nūshādir, nao sha) is found to have been extremely valuable in long-distance trade (ca AD 600–1150) from Egypt and China, where 6–8 kg N could purchase a human life, while air pollution associated with nūshādir collection was attributed to this nitrogen form. Ammonia was one of the keys to alchemy—seen as an early experimental mesocosm to understand the world—and later became of interest as ‘alkaline air’ within the eighteenth century development of pneumatic chemistry. The same economic, chemical and environmental properties are found to make ammonia and ammonium of huge relevance today. Successful control of acidifying SO2 and NOx emissions leaves atmospheric NH3 in excess in many areas, contributing to particulate matter (PM2.5) formation, while leading to a new significance of alkaline air, with adverse impacts on natural ecosystems. Investigations of epiphytic lichens and bog ecosystems show how the alkalinity effect of NH3 may explain its having three to five times the adverse effect of ammonium and nitrate, respectively. It is concluded that future air pollution policy should no longer neglect ammonia. Progress is likely to be mobilized by emphasizing the lost economic value of global N emissions ($200 billion yr−1), as part of developing the circular economy for sustainable nitrogen management
    corecore