1,824 research outputs found

    Perspectives on the Trypanosoma cruzi-host cell receptor interaction

    Get PDF
    Chagas disease is caused by the parasite Trypanosoma cruzi. The critical initial event is the interaction of the trypomastigote form of the parasite with host receptors. This review highlights recent observations concerning these interactions. Some of the key receptors considered are those for thromboxane, bradykinin, and for the nerve growth factor TrKA. Other important receptors such as galectin-3, thrombospondin, and laminin are also discussed. Investigation into the molecular biology and cell biology of host receptors for T. cruzi may provide novel therapeutic targets

    Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses

    Get PDF
    The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined

    Maternal obesity support services: a qualitative study of the perspectives of women and midwives

    Get PDF
    Background - Twenty percent of pregnant women in the UK are obese (BMI ≥ 30 kg/m2), reflecting the growing public health challenge of obesity in the 21st century. Obesity increases the risk of adverse outcomes during pregnancy and birth and has significant cost implications for maternity services. Gestational weight management strategies are a high priority; however the evidence for effective, feasible and acceptable weight control interventions is limited and inconclusive. This qualitative study explored the experiences and perceptions of pregnant women and midwives regarding existing support for weight management in pregnancy and their ideas for service development. Methods - A purposive sample of 6 women and 7 midwives from Doncaster, UK, participated in two separate focus groups. Transcripts were analysed thematically. Results - Two overarching themes were identified, 'Explanations for obesity and weight management' and 'Best care for pregnant women'. 'Explanations' included a lack of knowledge about weight, diet and exercise during pregnancy; self-talk messages which excused overeating; difficulties maintaining motivation for a healthy lifestyle; the importance of social support; stigmatisation; and sensitivity surrounding communication about obesity between midwives and their clients. 'Best care' suggested that weight management required care which was consistent and continuous, supportive and non-judgemental, and which created opportunities for interaction and mutual support between obese pregnant women. Conclusions - Women need unambiguous advice regarding healthy lifestyles, diet and exercise in pregnancy to address a lack of knowledge and a tendency towards unhelpful self-talk messages. Midwives expressed difficulties in communicating with their clients about their weight, given awareness that obesity is a sensitive and potentially stigmatising issue. This indicates more could be done to educate and support them in their work with obese pregnant women. Motivation and social support were strong explanatory themes for obesity and weight management, suggesting that interventions should focus on motivational strategies and social support facilitation

    Competition and parasitism in the native White Clawed Crayfish Austropotamobius pallipes and the invasive Signal Crayfish Pacifastacus leniusculus in the UK

    Get PDF
    Many crayfish species have been introduced to novel habitats worldwide, often threatening extinction of native species. Here we investigate competitive interactions and parasite infections in the native Austropotamobius pallipes and the invasive Pacifastacus leniusculus from single and mixed species populations in theUK. We found A. pallipes individuals to be significantly smaller in mixed compared to single species populations; conversely P. leniusculus individuals were larger in mixed than in single species populations. Our data provide no support for reproductive interference as a mechanism of competitive displacement and instead suggest competitive exclusion of A. pallipes from refuges by P. leniusculus leading to differential predation. We screened 52 P. leniusculus and 12 A. pallipes for microsporidian infection using PCR. We present the first molecular confirmation of Thelohania contejeani in the native A. pallipes; in addition, we provide the first evidence for T. contejeani in the invasive P. leniusculus. Three novel parasite sequenceswere also isolated fromP. leniusculus with an overall prevalence of microsporidian infection of 38% within this species; we discuss the identity of and the similarity between these three novel sequences. We also screened a subset of fifteen P. leniusculus and three A. pallipes for Aphanomyces astaci, the causative agent of crayfish plague and for the protistan crayfish parasite Psorospermium haeckeli. We found no evidence for infection by either agent in any of the crayfish screened. The high prevalence of microsporidian parasites and occurrence of shared T. contejeani infection lead us to propose that future studies should consider the impact of these parasites on native and invasive host fitness and their potential effects upon the dynamics of native-invader systems

    Repercussion of megakaryocyte-specific Gata1 Loss on megakaryopoiesis and the hematopoietic precursor compartment

    Get PDF
    During hematopoiesis, transcriptional programs are essential for the commitment and differentiation of progenitors into the different blood lineages. GATA1 is a transcription factor expressed in several hematopoietic lineages and essential for proper erythropoiesis and megakaryopoiesis. Megakaryocyte-specific genes, such as GP1BA, are known to be directly regulated by GATA1. Mutations in GATA1 can lead to dyserythropoietic anemia and pseudo gray-platelet syndrome. Selective loss of Gata1 expression in adult mice results in macrothrombocytopenia with platelet dysfunction, characterized by an excess of immature megakaryocytes. To specifically analyze the impact of Gata1 loss in mature committed megakaryocytes, we generated Gata1-Lox|Pf4-Cre mice (Gata1cKOMK). Consistent with previous findings, Gata1cKOMK mice are macrothrombocytopenic with platelet dysfunction. Supporting this notion we demonstrate that Gata1 regulates directly the transcription of Syk, a tyrosine kinase that functions downstream of Clec2 and GPVI receptors in megakaryocytes and platelets. Furthermore, we show that Gata1cKOMK mice display an additional aberrant megakaryocyte differentiation stage. Interestingly, these mice present a misbalance of the multipotent progenitor compartment and the erythroid lineage, which translates into compensatory stress erythropoiesis and splenomegaly. Despite the severe thrombocytopenia, Gata1cKOMK mice display a mild reduction of TPO plasma levels, and Gata1cK-OMK megakaryocytes show a mild increase in Pf4 mRNA levels; such a misbalance might be behind the general hematopoietic defects observed, affecting locally normal TPO and Pf4 levels at hematopoietic stem cell niches. © 2016 Meinders et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Genomic aberrations relate early and advanced stage ovarian cancer

    Get PDF
    Background Because of the distinct clinical presentation of early and advanced stage ovarian cancer, we aim to clarify whether these disease entities are solely separated by time of diagnosis or whether they arise from distinct molecular events. Methods Sixteen early and sixteen advanced stage ovarian carcinomas, matched for histological subtype and differentiation grade, were included. Genomic aberrations were compared for each early and advanced stage ovarian cancer by array comparative genomic hybridization. To study how the aberrations correlate to the clinical characteristics of the tumors we clustered tumors based on the genomic aberrations. Results The genomic aberration patterns in advanced stage cancer equalled those in early stage, but were more frequent in advanced stage (p=0.012). Unsupervised clustering based on genomic aberrations yielded two clusters that significantly discriminated early from advanced stage (p= 0.001), and that did differ significantly in survival (p= 0.002). These clusters however did give a more accurate prognosis than histological subtype or differentiation grade. Conclusion This study indicates that advanced stage ovarian cancer either progresses from early stage or from a common precursor lesion but that they do not arise from distinct carcinogenic molecular events. Furthermore, we show that array comparative genomic hybridization has the potential to identify clinically distinct patients

    Insights into the function of ion channels by computational electrophysiology simulations

    Get PDF
    Ion channels are of universal importance for all cell types and play key roles in cellular physiology and pathology. Increased insight into their functional mechanisms is crucial to enable drug design on this important class of membrane proteins, and to enhance our understanding of some of the fundamental features of cells. This review presents the concepts behind the recently developed simulation protocol Computational Electrophysiology (CompEL), which facilitates the atomistic simulation of ion channels in action. In addition, the review provides guidelines for its application in conjunction with the molecular dynamics software package GROMACS. We first lay out the rationale for designing CompEL as a method that models the driving force for ion permeation through channels the way it is established in cells, i.e., by electrochemical ion gradients across the membrane. This is followed by an outline of its implementation and a description of key settings and parameters helpful to users wishing to set up and conduct such simulations. In recent years, key mechanistic and biophysical insights have been obtained by employing the CompEL protocol to address a wide range of questions on ion channels and permeation. We summarize these recent findings on membrane proteins, which span a spectrum from highly ion-selective, narrow channels to wide diffusion pores. Finally we discuss the future potential of CompEL in light of its limitations and strengths. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov

    Toxoplasmosis-associated IRIS involving the CNS: a case report with longitudinal analysis of T cell subsets

    Get PDF
    Background: HIV-infected patients may present an unforeseen clinical worsening after initiating antiretroviral therapy known as immune reconstitution inflammatory syndrome (IRIS). This syndrome is characterized by a heightened inflammatory response toward infectious or non-infectious triggers, and it may affect different organs. Diagnosis of IRIS involving the central nervous system (CNS-IRIS) is challenging due to heterogeneous manifestations, absence of biomarkers to identify this condition, risk of long-term sequelae and high mortality. Hence, a deeper knowledge of CNS-IRIS pathogenesis is needed. Case presentation: A 37-year-old man was diagnosed with AIDS and cerebral toxoplasmosis. Anti-toxoplasma treatment was initiated immediately, followed by active antiretroviral therapy (HAART) 1 month later. At 2 months of HAART, he presented with progressive hyposensitivity of the right lower limb associated with brain and dorsal spinal cord lesions, compatible with paradoxical toxoplasmosis-associated CNS-IRIS, a condition with very few reported cases. A stereotactic biopsy was planned but was postponed based on its inherent risks. Patient showed clinical improvement with no requirement of corticosteroid therapy. Routine laboratorial analysis was complemented with longitudinal evaluation of blood T cell subsets at 0, 1, 2, 3 and 6 months upon HAART initiation. A control group composed by 9 HIV-infected patients from the same hospital but with no IRIS was analysed for comparison. The CNS-IRIS patient showed lower percentage of memory CD4(+) T cells and higher percentage of activated CD4(+) T cells at HAART initiation. The percentage of memory CD4(+) T cells drastically increased at 1 month after HAART initiation and became higher in comparison to the control group until clinical recovery onset; the percentage of memory CD8(+) T cells was consistently lower throughout follow-up. Interestingly, the percentage of regulatory T cells (Treg) on the CNS-IRIS patient reached a minimum around 1 month before symptoms onset. Conclusion: Although both stereotactic biopsies and steroid therapy might be of use in CNS-IRIS cases and should be considered for these patients, they might be unnecessary to achieve clinical improvement as shown in this case. Immunological characterization of more CNS-IRIS cases is essential to shed some light on the pathogenesis of this condition.Portuguese Foundation for Science and Technology (FCT; PIC/IC/83313/2007) and co-financed by the Portuguese North Regional Operational Program (ON.2 - O Novo Norte) under the National Strategic Reference Framework (QREN) through the European Regional Development Fund (FEDER). A FCT fellowship was attributed to RRS (PD/BD/106047/2015; Inter-University Doctoral Program in Ageing and Chronic Disease) and to CN [SFRH/BPD/65380/2009; Programa Operacional Potencial Humano (POPH) through the Fundo Social Europeu (FSE)]info:eu-repo/semantics/publishedVersio

    Kinetic regulation of multi-ligand binding proteins

    Get PDF
    Background: Second messengers, such as calcium, regulate the activity of multisite binding proteins in a concentration-dependent manner. For example, calcium binding has been shown to induce conformational transitions in the calcium-dependent protein calmodulin, under steady state conditions. However, intracellular concentrations of these second messengers are often subject to rapid change. The mechanisms underlying dynamic ligand-dependent regulation of multisite proteins require further elucidation. Results: In this study, a computational analysis of multisite protein kinetics in response to rapid changes in ligand concentrations is presented. Two major physiological scenarios are investigated: i) Ligand concentration is abundant and the ligand-multisite protein binding does not affect free ligand concentration, ii) Ligand concentration is of the same order of magnitude as the interacting multisite protein concentration and does not change. Therefore, buffering effects significantly influence the amounts of free ligands. For each of these scenarios the influence of the number of binding sites, the temporal effects on intermediate apo- and fully saturated conformations and the multisite regulatory effects on target proteins are investigated. Conclusions: The developed models allow for a novel and accurate interpretation of concentration and pressure jump-dependent kinetic experiments. The presented model makes predictions for the temporal distribution of multisite protein conformations in complex with variable numbers of ligands. Furthermore, it derives the characteristic time and the dynamics for the kinetic responses elicited by a ligand concentration change as a function of ligand concentration and the number of ligand binding sites. Effector proteins regulated by multisite ligand binding are shown to depend on ligand concentration in a highly nonlinear fashion

    Vocal Learning and Auditory-Vocal Feedback

    Get PDF
    Vocal learning is usually studied in songbirds and humans, species that can form auditory templates by listening to acoustic models and then learn to vocalize to match the template. Most other species are thought to develop vocalizations without auditory feedback. However, auditory input influences the acoustic structure of vocalizations in a broad distribution of birds and mammals. Vocalizations are dened here as sounds generated by forcing air past vibrating membranes. A vocal motor program may generate vocalizations such as crying or laughter, but auditory feedback may be required for matching precise acoustic features of vocalizations. This chapter discriminates limited vocal learning, which uses auditory input to fine-tune acoustic features of an inherited auditory template, from complex vocal learning, in which novel sounds are learned by matching a learned auditory template. Two or three songbird taxa and four or ve mammalian taxa are known for complex vocal learning. A broader range of mammals converge in the acoustic structure of vocalizations when in socially interacting groups, which qualifies as limited vocal learning. All birds and mammals tested use auditory-vocal feedback to adjust their vocalizations to compensate for the effects of noise, and many species modulate their signals as the costs and benefits of communicating vary. This chapter asks whether some auditory-vocal feedback may have provided neural substrates for the evolution of vocal learning. Progress will require more precise definitions of different forms of vocal learning, broad comparative review of their presence and absence, and behavioral and neurobiological investigations into the mechanisms underlying the skills.PostprintPeer reviewe
    corecore