381 research outputs found
Characterisation of mechanical and thermal properties in flax fabric reinforced geopolymer composites
This paper presents the mechanical and thermal properties of flax fabric reinforced fly ash based geopolymer composites. Geopolymer composites reinforced with 2.4, 3.0 and 4.1 wt% woven flax fabric in various layers were fabricated using a hand lay-up technique and tested for mechanical properties such as flexural strength, flexural modulus, compressive strength, hardness, and fracture toughness. All mechanical properties were improved by increasing the flax fibre contents, and showed superior mechanical properties over a pure geopolymer matrix. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) studies were carried out to evaluate the composition and fracture surfaces of geopolymer and geopolymer/flax composites. The thermal behaviour of composites was studied by thermogravimetric analysis (TGA) and the results showed significant degradation of flax fibres at 300 °C
Dual Fistulas of Ascending Aorta and Coronary Artery to Pulmonary Artery
Coronary artery fistula to pulmonary artery is common. However, to the best of our knowledge, a case of coronary artery fistula to pulmonary artery associated with aortopulmonary fistula remains unreported. We herein report a 64-year-old female with a left anterior descending coronary artery and ascending aorta to pulmonary artery fistulas, and conduct a brief review of the literature
Copy number variants prioritization after array-CGH analysis - a cohort of 1000 patients
Array-based comparative genomic hybridization has been assumed to be the first genetic test offered to detect genomic imbalances in patients with unexplained intellectual disability with or without dysmorphisms, multiple congenital anomalies, learning difficulties and autism spectrum disorders. Our study contributes to the genotype/phenotype correlation with the delineation of laboratory criteria which help to classify the different copy number variants (CNVs) detected. We clustered our findings into five classes ranging from an imbalance detected in a microdeletion/duplication syndrome region (class I) to imbalances that had previously been reported in normal subjects in the Database of Genomic Variants (DGV) and thus considered common variants (class IV).info:eu-repo/semantics/publishedVersio
CD160 serves as a negative regulator of NKT cells in acute hepatic injury
[EN] CD160 and BTLA both bind to herpes virus entry mediator. Although a negative regulatory function of BTLA in natural killer T (NKT) cell activation has been reported, whether CD160 is also involved is unclear. By analyzing CD160−/− mice and mixed bone marrow chimeras, we show that CD160 is not essential for NKT cell development. However, CD160−/− mice exhibit severe liver injury after in vivo challenge with α-galactosylceramide (α-GalCer). Moreover, CD160−/− mice are more susceptible to Concanavalin A challenge, and display elevated serum AST and ALT levels, hyperactivation of NKT cells, and enhanced IFN-γ, TNF, and IL-4 production. Lastly, inhibition of BTLA by anti-BTLA mAb aggravates α-GalCer-induced hepatic injury in CD160−/− mice, suggesting that both CD160 and BTLA serve as non-overlapping negative regulators of NKT cells. Our data thus implicate CD160 as a co-inhibitory receptor that delivers antigen-dependent signals in NKT cells to dampen cytokine production during early innate immune activationSIWe thank the NIH Tetramer Core Facility for providing PBS 57 ligand loaded CD1d Tetramers. Further, we thank the staffs of Gyerim Experimental Animal Resource Center for animal care and technical assistance. K.-M. Lee was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future planning (NRF-2016M3A9B6948342, NRF- 2017R1A2B3004828, and NRF-2018M3A9D3079288). S.-J. Kim was supported by the Korea Health Industry Development Institute (KHIDI-HI14C2640) grant funded by Korea Government. S.-J. Ha was supported by a grant from the NRF (NRF- 2018R1A2A1A05076997). T.-J. Kim was additionally supported by a grant from the NRF (NRF-2016R1A6A3A04009698
Pregnancy and childbirth: What changes in the lifestyle of women who become mothers?
Pregnancy is a period influenced by the interaction of several factors, therefore this study aimed to identify changes in lifestyles due to pregnancy and childbirth in Portuguese and immigrant women in Portugal. This is a qualitative study, using the semi-structured interview, with eighty-two Portuguese and immigrant women. Content analysis was used, with verbatim classification supported by Nvivo 10. It was authorized by an Ethics Commission. Results revealed that the primary changes in lifestyles due to pregnancy were in eating habits (nutrition), daily activity, exposure to danger, sleep and rest patterns, social and family relationships, going out, self-care, work, clothing and footwear, travel, health monitoring and sexual activity and substances consumption. The main change after the birth, manifested by these women, was that their lives began to revolve around their baby
Sodium channel slow inactivation interferes with open channel block
Mutations in the voltage-gated sodium channel Nav1.7 are linked to inherited pain syndromes such as erythromelalgia (IEM) and paroxysmal extreme pain disorder (PEPD). PEPD mutations impair Nav1.7 fast inactivation and increase persistent currents. PEPD mutations also increase resurgent currents, which involve the voltage-dependent release of an open channel blocker. In contrast, IEM mutations, whenever tested, leave resurgent currents unchanged. Accordingly, the IEM deletion mutation L955 (ΔL955) fails to produce resurgent currents despite enhanced persistent currents, which have hitherto been considered a prerequisite for resurgent currents. Additionally, ΔL955 exhibits a prominent enhancement of slow inactivation (SI). We introduced mutations into Nav1.7 and Nav1.6 that either enhance or impair SI in order to investigate their effects on resurgent currents. Our results show that enhanced SI is accompanied by impaired resurgent currents, which suggests that SI may interfere with open-channel block
Enamel crystals of mice susceptible or resistant to dental fluorosis: an AFM study
Objective: This study aimed to assess the overall apatite crystals profile in the enamel matrix of mice susceptible (A/J strain) or resistant (129P3/J strain) to dental fluorosis through analyses by atomic force microscopy (AFM). Material and Methods: Samples from the enamel matrix in the early stages of secretion and maturation were obtained from the incisors of mice from both strains. All detectable traces of matrix protein were removed from the samples by a sequential extraction procedure. The purified crystals (n=13 per strain) were analyzed qualitatively in the AFM. Surface roughness profile (Ra) was measured. Results: The mean (±SD) Ra of the crystals of A/J strain (0.58±0.15 nm) was lower than the one found for the 129P3/J strain (0.66±0.21 nm) but the difference did not reach statistical significance (t=1.187, p=0.247). Crystals of the 129P3/J strain (70.42±6.79 nm) were found to be significantly narrower (t=4.013, p=0.0013) than the same parameter measured for the A/J strain (90.42±15.86 nm). Conclusion: enamel crystals of the 129P3/J strain are narrower, which is indicative of slower crystal growth and could interfere in the occurrence of dental fluorosis
The Trypanosoma cruzi Virulence Factor Oligopeptidase B (OPBTc) Assembles into an Active and Stable Dimer
Oligopeptidase B, a processing enzyme of the prolyl oligopeptidase family, is considered as an important virulence factor in trypanosomiasis. Trypanosoma cruzi oligopeptidase B (OPBTc) is involved in host cell invasion by generating a Ca2+-agonist necessary for recruitment and fusion of host lysosomes at the site of parasite attachment. The underlying mechanism remains unknown and further structural and functional characterization of OPBTc may help clarify its physiological function and lead to the development of new therapeutic molecules to treat Chagas disease. In the present work, size exclusion chromatography and analytical ultracentrifugation experiments demonstrate that OPBTc is a dimer in solution, an association salt and pH-resistant and independent of intermolecular disulfide bonds. The enzyme retains its dimeric structure and is fully active up to 42°C. OPBTc is inactivated and its tertiary, but not secondary, structure is disrupted at higher temperatures, as monitored by circular dichroism and fluorescence spectroscopy. It has a highly stable secondary structure over a broad range of pH, undergoes subtle tertiary structure changes at low pH and is less stable under moderate ionic strength conditions. These results bring new insights into the structural properties of OPBTc, contributing to future studies on the rational design of OPBTc inhibitors as a promising strategy for Chagas disease chemotherapy
- …