298 research outputs found
Impact of Smoking and Chewing Tobacco on Arsenic-Induced Skin Lesions
BACKGROUND: We recently reported that the main reason for the documented higher prevalence of arsenic-related skin lesions among men than among women is the result of less efficient arsenic metabolism. OBJECTIVE: Because smoking has been associated with less efficient arsenic methylation, we aimed to elucidate interactions between tobacco use and arsenic metabolism for the risk of developing skin lesions. METHODS: We used a population-based case-referent study that showed increased risk for skin lesions in relation to chronic arsenic exposure via drinking water in Bangladesh and randomly selected 526 of the referents (random sample of inhabitants > 4 years old; 47% male) and all 504 cases (54% male) with arsenic-related skin lesions to measure arsenic metabolites [methylarsonic acid (MA) and dimethylarsinic acid (DMA)] in urine using high-performance liquid chromatography (HPLC) and inductively coupled plasma mass spectrometry (ICPMS). RESULTS: The odds ratio for skin lesions was almost three times higher in the highest tertile of urinary %MA than in the lowest tertile. Men who smoked cigarettes and bidis (locally produced cigarettes; 33% of referents, 58% of cases) had a significantly higher risk for skin lesions than did nonsmoking men; this association decreased slightly after accounting for arsenic metabolism. Only two women smoked, but women who chewed tobacco (21% of referents, 43% of cases) had a considerably higher risk of skin lesions than did women who did not use tobacco. The odds ratio (OR) for women who chewed tobacco and who had < or = 7.9%MA was 3.8 [95% confidence interval (CI), 1.4-10] compared with women in the same MA tertile who did not use tobacco. In the highest tertile of %MA or %inorganic arsenic (iAs), women who chewed tobacco had ORs of 7.3 and 7.5, respectively, compared with women in the lowest tertiles who did not use tobacco. CONCLUSION: The increased risk of arsenic-related skin lesions in male smokers compared with nonsmokers appears to be partly explained by impaired arsenic methylation, while there seemed to be an excess risk due to interaction between chewing tobacco and arsenic metabolism in women
Epigenetic Changes Induced by Air Toxics: Formaldehyde Exposure Alters miRNA Expression Profiles in Human Lung Cells
Bac k g r o u n d: Exposure to formaldehyde, a known air toxic, is associated with cancer and lung disease. Despite the adverse health effects of formaldehyde, the mechanisms underlying formaldehydeinduced disease remain largely unknown. Research has uncovered microRNAs (miRNAs) as key posttranscriptional regulators of gene expression that may influence cellular disease state. Although studies have compared different miRNA expression patterns between diseased and healthy tissue, this is the first study to examine perturbations in global miRNA levels resulting from formaldehyde exposure. Objectives: We investigated whether cellular miRNA expression profiles are modified by formaldehyde exposure to test the hypothesis that formaldehyde exposure disrupts miRNA expression levels within lung cells, representing a novel epigenetic mechanism through which formaldehyde may induce disease. Me t h o d s: Human lung epithelial cells were grown at airâliquid interface and exposed to gaseous formaldehyde at 1 ppm for 4 hr. Small RNAs and protein were collected and analyzed for miRNA expression using microarray analysis and for interleukin (IL-8) protein levels by enzyme-linked immunosorbent assay (ELISA). Res u l t s: Gaseous formaldehyde exposure altered the miRNA expression profiles in human lun
What Do We Feed to Food-Production Animals? A Review of Animal Feed Ingredients and Their Potential Impacts on Human Health
OBJECTIVE: Animal feeding practices in the United States have changed considerably over the past century. As large-scale, concentrated production methods have become the predominant model for animal husbandry, animal feeds have been modified to include ingredients ranging from rendered animals and animal waste to antibiotics and organoarsenicals. In this article we review current U.S. animal feeding practices and etiologic agents that have been detected in animal feed. Evidence that current feeding practices may lead to adverse human health impacts is also evaluated. DATA SOURCES: We reviewed published veterinary and human-health literature regarding animal feeding practices, etiologic agents present in feed, and human health effects along with proceedings from animal feed workshops. DATA EXTRACTION: Data were extracted from peer-reviewed articles and books identified using PubMed, Agricola, U.S. Department of Agriculture, Food and Drug Administration, and Centers for Disease Control and Prevention databases. DATA SYNTHESIS: Findings emphasize that current animal feeding practices can result in the presence of bacteria, antibiotic-resistant bacteria, prions, arsenicals, and dioxins in feed and animal-based food products. Despite a range of potential human health impacts that could ensue, there are significant data gaps that prevent comprehensive assessments of human health risks associated with animal feed. Limited data are collected at the federal or state level concerning the amounts of specific ingredients used in animal feed, and there are insufficient surveillance systems to monitor etiologic agents âfrom farm to fork.â CONCLUSIONS: Increased funding for integrated veterinary and human health surveillance systems and increased collaboration among feed professionals, animal producers, and veterinary and public health officials is necessary to effectively address these issues
Arsenic Exposure in Pregnancy Increases the Risk of Lower Respiratory Tract Infection and Diarrhea during Infancy in Bangladesh
BACKGROUND: Previous studies have reported associations between prenatal arsenic exposure and increased risk of infant mortality. An increase in infectious diseases has been proposed as the underlying cause of these associations, but there is no epidemiologic research to support the hypothesis. OBJECTIVE: We evaluated the association between arsenic exposure in pregnancy and morbidity during infancy. METHODS: This prospective population-based cohort study included 1,552 live-born infants of women enrolled during 2002-2004 in Matlab, Bangladesh. Arsenic exposure was assessed by the concentrations of metabolites of inorganic arsenic in maternal urine samples collected at gestational weeks 8 and 30. Information on symptoms of lower respiratory tract infection (LRTI) and diarrhea in infants was collected by 7-day recalls at monthly home visits. RESULTS: In total, 115,850 person-days of observation were contributed by the infants during a 12-month follow-up period. The estimated risk of LRTI and severe LRTI increased by 69% [adjusted relative risk (RR) = 1.69; 95% confidence interval (CI), 1.36-2.09)] and 54% (RR = 1.54; 95% CI, 1.21-1.97), respectively, for infants of mothers with urinary arsenic concentrations in the highest quintile (average of arsenic concentrations measured in early and late gestation, 262-977 ”g/L) relative to those with exposure in the lowest quintile (< 39 ”g/L). The corresponding figure for diarrhea was 20% (RR = 1.20; 95% CI, 1.01-1.43). CONCLUSIONS: Arsenic exposure during pregnancy was associated with increased morbidity in infectious diseases during infancy. Taken together with the previous evidence of adverse effects on health, the findings strongly emphasize the need to reduce arsenic exposure via drinking water
Effects of Radon and UV Exposure on Skin Cancer Mortality in Switzerland.
BACKGROUND: Skin cancer incidence in Switzerland is among the highest in the world. In addition to exposure to ultraviolet (UV) radiation, radon alpha particles attached to aerosols can adhere to the skin and potentially cause carcinogenic effects. OBJECTIVES: We investigated the effects of radon and UV exposure on skin cancer mortality. METHODS: Cox proportional hazard regression was used to study the association between exposures and skin cancer mortality in adults from the Swiss National Cohort. Modeled radon exposure and erythemal-weighted UV dose were assigned to addresses at baseline. Effect estimates were adjusted for sex, civil status, mother tongue, education, job position, neighborhood socioeconomic position, and UV exposure from outdoor occupation. RESULTS: The study included 5.2 million adults (mean age 48 y) and 2,989 skin cancer deaths, with 1,900 indicating malignant melanoma (MM) as the primary cause of death. Adjusted hazard ratios (HR) for MM at age 60 were 1.16 (95% CI: 1.04, 1.29) per 100 Bq/m3 radon and 1.11 (1.01, 1.23) per W/m2 in UV dose. Radon effects decreased with age. Risk of MM death associated with residential UV exposure was higher for individuals engaged in outdoor work with UV exposure (HR 1.94 [1.17, 3.23]), though not statistically significantly different compared to not working outdoors (HR 1.09 [0.99, 1.21],
p=0.09). CONCLUSIONS: There is considerable variation in radon and UV exposure across Switzerland. Our study suggests both are relevant risk factors for skin cancer mortality. A better understanding of the role of the UV radiation and radon exposure is of high public health relevance. https://doi.org/10.1289/EHP825
Should cigarette pack sizes be capped?
BACKGROUND: Very few countries regulate maximum cigarette pack size. Larger, non-standard sizes are increasingly being introduced by the tobacco industry. Larger portion sizes increase food consumption; larger cigarette packs may similarly increase tobacco consumption. Here we consider the evidence for legislation to cap cigarette pack size to reduce tobacco-related harm. AIMS AND ANALYSIS: We first describe the regulations regarding minimum and maximum pack sizes in the 12 countries that have adopted plain packaging legislation and describe the range of sizes available. We then discuss evidence for two key assumptions that would support capping pack size. First, regarding the causal nature of the relationship between pack size and tobacco consumption, observational evidence suggests that people smoke fewer cigarettes when using smaller packs. Secondly, regarding the causal nature of the relationship between reducing consumption and successful cessation, reductions in number of cigarettes smoked per day are associated with increased cessation attempts and subsequent abstinence. However, more experimental evidence is needed to infer the causal nature of these associations among general populations of smokers. CONCLUSION: Cigarette pack size is positively associated with consumption and consumption is negatively associated with cessation. Based on limited evidence of the causal nature of these associations, we hypothesize that government regulations to cap cigarette pack sizes would positively contribute to reducing smoking prevalence
- âŠ