17 research outputs found

    State of the climate in 2013

    Get PDF
    In 2013, the vast majority of the monitored climate variables reported here maintained trends established in recent decades. ENSO was in a neutral state during the entire year, remaining mostly on the cool side of neutral with modest impacts on regional weather patterns around the world. This follows several years dominated by the effects of either La Niña or El Niño events. According to several independent analyses, 2013 was again among the 10 warmest years on record at the global scale, both at the Earths surface and through the troposphere. Some regions in the Southern Hemisphere had record or near-record high temperatures for the year. Australia observed its hottest year on record, while Argentina and New Zealand reported their second and third hottest years, respectively. In Antarctica, Amundsen-Scott South Pole Station reported its highest annual temperature since records began in 1957. At the opposite pole, the Arctic observed its seventh warmest year since records began in the early 20th century. At 20-m depth, record high temperatures were measured at some permafrost stations on the North Slope of Alaska and in the Brooks Range. In the Northern Hemisphere extratropics, anomalous meridional atmospheric circulation occurred throughout much of the year, leading to marked regional extremes of both temperature and precipitation. Cold temperature anomalies during winter across Eurasia were followed by warm spring temperature anomalies, which were linked to a new record low Eurasian snow cover extent in May. Minimum sea ice extent in the Arctic was the sixth lowest since satellite observations began in 1979. Including 2013, all seven lowest extents on record have occurred in the past seven years. Antarctica, on the other hand, had above-average sea ice extent throughout 2013, with 116 days of new daily high extent records, including a new daily maximum sea ice area of 19.57 million km2 reached on 1 October. ENSO-neutral conditions in the eastern central Pacific Ocean and a negative Pacific decadal oscillation pattern in the North Pacific had the largest impacts on the global sea surface temperature in 2013. The North Pacific reached a historic high temperature in 2013 and on balance the globally-averaged sea surface temperature was among the 10 highest on record. Overall, the salt content in nearsurface ocean waters increased while in intermediate waters it decreased. Global mean sea level continued to rise during 2013, on pace with a trend of 3.2 mm yr-1 over the past two decades. A portion of this trend (0.5 mm yr-1) has been attributed to natural variability associated with the Pacific decadal oscillation as well as to ongoing contributions from the melting of glaciers and ice sheets and ocean warming. Global tropical cyclone frequency during 2013 was slightly above average with a total of 94 storms, although the North Atlantic Basin had its quietest hurricane season since 1994. In the Western North Pacific Basin, Super Typhoon Haiyan, the deadliest tropical cyclone of 2013, had 1-minute sustained winds estimated to be 170 kt (87.5 m s-1) on 7 November, the highest wind speed ever assigned to a tropical cyclone. High storm surge was also associated with Haiyan as it made landfall over the central Philippines, an area where sea level is currently at historic highs, increasing by 200 mm since 1970. In the atmosphere, carbon dioxide, methane, and nitrous oxide all continued to increase in 2013. As in previous years, each of these major greenhouse gases once again reached historic high concentrations. In the Arctic, carbon dioxide and methane increased at the same rate as the global increase. These increases are likely due to export from lower latitudes rather than a consequence of increases in Arctic sources, such as thawing permafrost. At Mauna Loa, Hawaii, for the first time since measurements began in 1958, the daily average mixing ratio of carbon dioxide exceeded 400 ppm on 9 May. The state of these variables, along with dozens of others, and the 2013 climate conditions of regions around the world are discussed in further detail in this 24th edition of the State of the Climate series. © 2014, American Meteorological Society. All rights reserved

    Open data from the third observing run of LIGO, Virgo, KAGRA, and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages

    Cholinergic projections from the midbrain reticular formation and the parabigeminal nucleus to the lateral geniculate nucleus in the tree shrew.

    No full text
    The distribution and sources of putative cholinergic fibers within the lateral geniculate nucleus (GL) of the tree shrew have been examined by using the immunocytochemical localization of choline acetyltransferase (ChAT). ChAT-immunoreactive fibers are found throughout the thalamus but are particularly abundant in the GL as compared to other principal sensory thalamic nuclei (medial geniculate nucleus, ventral posterior nucleus). Individual ChAT-immunoreactive fibers are extremely fine in caliber and display numerous small swellings along their lengths. Within the GL, ChAT-immunoreactive fibers are more numerous in the layers than in the interlaminar zones and, in most cases, the greatest density is found in layers 4 and 5. Two sources for the ChAT-immunoreactive fibers in the GL have been identified--the parabigeminal nucleus (Pbg) and the pedunculopontine tegmental nucleus (PPT)--and the contribution that each makes to the distribution of ChAT-immunoreactive fibers in GL was determined by combining immunocytochemical, axonal transport, and lesion methods. The projection from the Pbg is strictly contralateral, travels via the optic tract, and terminates in layers 1, 3, 5, and 6 as well as the interlaminar zones on either side of layer 5. The projection from PPT is bilateral (ipsilateral dominant) and terminates throughout the GL as well as in other thalamic nuclei. Lesions of the Pbg eliminate the ChAT-immunoreactive fibers normally found in the optic tract but have no obvious effect on the density of ChAT-immunoreactive fibers in the contralateral GL. In contrast, lesions of PPT produce a conspicuous decrease in the number of ChAT-immunoreactive fibers in the GL and in other thalamic nuclei on the side of the lesion but have no obvious effect on the number of ChAT-immunoreactive fibers in the optic tract. These results suggest that there are two sources of cholinergic projections to the GL in the tree shrew which are likely to play different roles in modulating the transmission of visual activity to the cortex. The Pbg is recognized as a part of the visual system by virtue of its reciprocal connections with the superficial layers of the superior colliculus, while the PPT is a part of the midbrain reticular formation and is thought to play a non-modality-specific role in modulating the activity of neurons throughout the thalamus and in other regions of the brainstem

    New view of the organization of the pulvinar nucleus in Tupaia as revealed by tectopulvinar and pulvinar-cortical projections.

    No full text
    The projections of the superficial layers of the superior colliculus to the pulvinar nucleus in Tupaia were reexamined by injecting WGA-HRP into the tectum. The main result was finding two different patterns of terminations in the pulvinar nucleus: a zone remote from the lateral geniculate nucleus, which occupies the dorsomedial and caudal poles of the pulvinar nucleus, was almost entirely filled with terminals in every case irrespective of the location of the injection site; and a second division of the pulvinar nucleus, adjacent to the lateral geniculate nucleus, contained irregular patches--much more densely populated--and the distribution of patches varied from case to case. We call the first projection "diffuse" and the patchy projection "specific." Next we injected several divisions of the extrastriate visual cortex to find the cortical target of each pathway. The diffuse path terminates in the ventral temporal area (Tv). The specific path terminates in the dorsal temporal area (Td) and area 18. We speculated about the significance of the two pathways: the specific path may be responsible for the preservation of vision after removal of the striate cortex; the diffuse path may have an important place in the evolution of the visual areas of the temporal and occipital lobe. We argued that the target of the diffuse path is in a position to relate limbic and visual impulses and relay the product of such integration to the other visual areas, striate as well as extrastriate cortex

    Perturbative momentum transport in MAST L-mode plasmas

    No full text
    Non-axisymmetric magnetic fields are used to perturbatively probe momentum transport physics in MAST L-mode plasmas. The low beta L-mode target was chosen to complement previous experiments conducted in high beta NSTX H-mode plasmas (β N = 3.5-4.6) where an inward momentum pinch was measured. In those cases quasi-linear gyrokinetic simulations of unstable ballooning micro-instabilities predict weak or outward momentum convection, in contrast to the measurements. The weak pinch was predicted to be due to both electromagnetic effects at high beta and low aspect ratio minimizing the symmetry-breaking of the instabilities responsible for momentum transport. In an attempt to lessen these electromagnetic effects at low aspect ratio, perturbative experiments were run in MAST L-mode discharges at lower beta (β N = 2). The perturbative transport analysis used the time-dependent response following the termination of applied 3D fields that briefly brake the plasma rotation (similar to the NSTX H-mode experiments). Assuming time-invariant diffusive (χ ℓ) and convective (V ℓ) transport coefficients, an inward pinch is inferred with magnitudes, (RV ℓ/χ ℓ) = (-1)-(-9), similar to those found in NSTX H-modes and in conventional tokamaks. However, if experimental uncertainties due to non-stationary conditions during and after the applied 3D field are considered, a weak pinch or even outward convection is inferred, (RV ℓ/χ ℓ) = (-1)-(+5). Linear gyrokinetic simulations indicate that for these lower beta L-modes, the predicted momentum pinch is predicted to be relatively small, (RV ℓ/χ ℓ) sim ≈ -1. While this falls within the experimentally inferred range, the uncertainties are practically too large to quantitatively validate the predictions. Challenges and implications for this particular experimental technique are discussed, as well as additional possible physical mechanisms that may be important in understanding momentum transport in these low aspect ratio plasmas. </p
    corecore