164 research outputs found

    Perception of Relative Depth Interval: Systematic Biases in Perceived Depth

    Get PDF
    Given an estimate of the binocular disparity between a pair of points and an estimate of the viewing distance, or knowledge of eye position, it should be possible to obtain an estimate of their depth separation. Here we show that, when points are arranged in different vertical geometric configurations across two intervals, many observers find this task difficult. Those who can do the task tend to perceive the depth interval in one configuration as very different from depth in the other configuration. We explore two plausible explanations for this effect. The first is the tilt of the empirical vertical horopter: Points perceived along an apparently vertical line correspond to a physical line of points tilted backwards in space. Second, the eyes can rotate in response to a particular stimulus. Without compensation for this rotation, biases in depth perception would result. We measured cyclovergence indirectly, using a standard psychophysical task, while observers viewed our depth configuration. Biases predicted from error due either to cyclovergence or to the tilted vertical horopter were not consistent with the depth configuration results. Our data suggest that, even for the simplest scenes, we do not have ready access to metric depth from binocular disparity.</jats:p

    Defining the essence of innovation how important terms in promoting of transformation processes in Ukraine

    Get PDF
    Feature hierarchies are essential to many visual object recognition systems and are well motivated by observations in biological systems. The present paper proposes an algorithm to incrementally compute feature hierarchies. The features are represented as estimated densities, using a variant of local soft histograms. The kernel functions used for this estimation in conjunction with their unitary extension establish a tight frame and results from framelet theory apply. Traversing the feature hierarchy requires resampling of the spatial and the feature bins. For the resampling, we derive a multi-resolution scheme for quadratic spline kernels and we derive an optimization algorithm for the upsampling. We complement the theoretic results by some illustrative experiments, consideration of convergence rate and computational efficiency.DIPLECSGARNICSELLII

    Plant pest surveillance: from satellites to molecules

    Get PDF
    Open Access Article; Published online: 15 Mar 2021Plant pests and diseases impact both food security and natural ecosystems, and the impact has been accelerated in recent years due to several confounding factors. The globalisation of trade has moved pests out of natural ranges, creating damaging epidemics in new regions. Climate change has extended the range of pests and the pathogens they vector. Resistance to agrochemicals has made pathogens, pests, and weeds more difficult to control. Early detection is critical to achieve effective control, both from a biosecurity as well as an endemic pest perspective. Molecular diagnostics has revolutionised our ability to identify pests and diseases over the past two decades, but more recent technological innovations are enabling us to achieve better pest surveillance. In this review, we will explore the different technologies that are enabling this advancing capability and discuss the drivers that will shape its future deployment

    Measurement of the Hadronic Photon Structure Function F_2^gamma at LEP2

    Get PDF
    The hadronic structure function of the photon F_2^gamma is measured as a function of Bjorken x and of the factorisation scale Q^2 using data taken by the OPAL detector at LEP. Previous OPAL measurements of the x dependence of F_2^gamma are extended to an average Q^2 of 767 GeV^2. The Q^2 evolution of F_2^gamma is studied for average Q^2 between 11.9 and 1051 GeV^2. As predicted by QCD, the data show positive scaling violations in F_2^gamma. Several parameterisations of F_2^gamma are in agreement with the measurements whereas the quark-parton model prediction fails to describe the data.Comment: 4 pages, 2 figures, to appear in the proceedings of Photon 2001, Ascona, Switzerlan

    A measurement of the tau mass and the first CPT test with tau leptons

    Full text link
    We measure the mass of the tau lepton to be 1775.1+-1.6(stat)+-1.0(syst.) MeV using tau pairs from Z0 decays. To test CPT invariance we compare the masses of the positively and negatively charged tau leptons. The relative mass difference is found to be smaller than 3.0 10^-3 at the 90% confidence level.Comment: 10 pages, 4 figures, Submitted to Phys. Letts.

    Measurement of the B0 Lifetime and Oscillation Frequency using B0->D*+l-v decays

    Full text link
    The lifetime and oscillation frequency of the B0 meson has been measured using B0->D*+l-v decays recorded on the Z0 peak with the OPAL detector at LEP. The D*+ -> D0pi+ decays were reconstructed using an inclusive technique and the production flavour of the B0 mesons was determined using a combination of tags from the rest of the event. The results t_B0 = 1.541 +- 0.028 +- 0.023 ps, Dm_d = 0.497 +- 0.024 +- 0.025 ps-1 were obtained, where in each case the first error is statistical and the second systematic.Comment: 17 pages, 4 figures, submitted to Phys. Lett.

    First Measurement of Z/gamma* Production in Compton Scattering of Quasi-real Photons

    Full text link
    We report the first observation of Z/gamma* production in Compton scattering of quasi-real photons. This is a subprocess of the reaction e+e- to e+e-Z/gamma*, where one of the final state electrons is undetected. Approximately 55 pb-1 of data collected in the year 1997 at an e+e- centre-of-mass energy of 183 GeV with the OPAL detector at LEP have been analysed. The Z/gamma* from Compton scattering has been detected in the hadronic decay channel. Within well defined kinematic bounds, we measure the product of cross-section and Z/gamma* branching ratio to hadrons to be (0.9+-0.3+-0.1) pb for events with a hadronic mass larger than 60 GeV, dominated by (e)eZ production. In the hadronic mass region between 5 GeV and 60 GeV, dominated by (e)egamma* production, this product is found to be (4.1+-1.6+-0.6) pb. Our results agree with the predictions of two Monte Carlo event generators, grc4f and PYTHIA.Comment: 18 pages, LaTeX, 5 eps figures included, submitted to Physics Letters

    Search for Higgs Bosons in e+e- Collisions at 183 GeV

    Get PDF
    The data collected by the OPAL experiment at sqrts=183 GeV were used to search for Higgs bosons which are predicted by the Standard Model and various extensions, such as general models with two Higgs field doublets and the Minimal Supersymmetric Standard Model (MSSM). The data correspond to an integrated luminosity of approximately 54pb-1. None of the searches for neutral and charged Higgs bosons have revealed an excess of events beyond the expected background. This negative outcome, in combination with similar results from searches at lower energies, leads to new limits for the Higgs boson masses and other model parameters. In particular, the 95% confidence level lower limit for the mass of the Standard Model Higgs boson is 88.3 GeV. Charged Higgs bosons can be excluded for masses up to 59.5 GeV. In the MSSM, mh > 70.5 GeV and mA > 72.0 GeV are obtained for tan{beta}>1, no and maximal scalar top mixing and soft SUSY-breaking masses of 1 TeV. The range 0.8 < tanb < 1.9 is excluded for minimal scalar top mixing and m{top} < 175 GeV. More general scans of the MSSM parameter space are also considered.Comment: 49 pages. LaTeX, including 33 eps figures, submitted to European Physical Journal

    A Measurement of the Product Branching Ratio f(b->Lambda_b).BR(Lambda_b->Lambda X) in Z0 Decays

    Get PDF
    The product branching ratio, f(b->Lambda_b).BR(Lambda_b->Lambda X), where Lambda_b denotes any weakly-decaying b-baryon, has been measured using the OPAL detector at LEP. Lambda_b are selected by the presence of energetic Lambda particles in bottom events tagged by the presence of displaced secondary vertices. A fit to the momenta of the Lambda particles separates signal from B meson and fragmentation backgrounds. The measured product branching ratio is f(b->Lambda_b).BR(Lambda_b->Lambda X) = (2.67+-0.38(stat)+0.67-0.60(sys))% Combined with a previous OPAL measurement, one obtains f(b->Lambda_b).BR(Lambda_b->Lambda X) = (3.50+-0.32(stat)+-0.35(sys))%.Comment: 16 pages, LaTeX, 3 eps figs included, submitted to the European Physical Journal
    corecore