106 research outputs found
Gravitational Collapse of Null Radiation and a String fluid
We consider the end state of collapsing null radiation with a string fluid.
It is shown that, if diffusive transport is assumed for the string, that a
naked singularity can form (at least locally). The model has the advantage of
not being asymptotically flat. We also analyse the case of a radiation-string
two-fluid and show that a locally naked singularity can result in the collapse
of such matter. We contrast this model with that of strange quark matter.Comment: RevTeX 4.0 (8 pages - no figures). submitted to Phys Rev D. Some
changes to abstract, introduction and conclusion - references update
Fate of the first traversible wormhole: black-hole collapse or inflationary expansion
We study numerically the stability of Morris & Thorne's first traversible
wormhole, shown previously by Ellis to be a solution for a massless ghost
Klein-Gordon field. Our code uses a dual-null formulation for spherically
symmetric space-time integration, and the numerical range covers both universes
connected by the wormhole. We observe that the wormhole is unstable against
Gaussian pulses in either exotic or normal massless Klein-Gordon fields. The
wormhole throat suffers a bifurcation of horizons and either explodes to form
an inflationary universe or collapses to a black hole, if the total input
energy is respectively negative or positive. As the perturbations become small
in total energy, there is evidence for critical solutions with a certain
black-hole mass or Hubble constant. The collapse time is related to the initial
energy with an apparently universal critical exponent. For normal matter, such
as a traveller traversing the wormhole, collapse to a black hole always
results. However, carefully balanced additional ghost radiation can maintain
the wormhole for a limited time. The black-hole formation from a traversible
wormhole confirms the recently proposed duality between them. The inflationary
case provides a mechanism for inflating, to macroscopic size, a Planck-sized
wormhole formed in space-time foam.Comment: 10 pages, RevTeX4, 11 figures, epsf.st
Neutrino masses in R-parity violating supersymmetric models
We study neutrino masses and mixing in R-parity violating supersymmetric
models with generic soft supersymmetry breaking terms. Neutrinos acquire masses
from various sources: Tree level neutrino--neutralino mixing and loop effects
proportional to bilinear and/or trilinear R-parity violating parameters. Each
of these contributions is controlled by different parameters and have different
suppression or enhancement factors which we identified. Within an Abelian
horizontal symmetry framework these factors are related and specific
predictions can be made. We found that the main contributions to the neutrino
masses are from the tree level and the bilinear loops and that the observed
neutrino data can be accommodated once mild fine-tuning is allowed.Comment: 18 pages; minor typos corrected. To be published in Physical Review
Gauge-ready formulation of the cosmological kinetic theory in generalized gravity theories
We present cosmological perturbations of kinetic components based on
relativistic Boltzmann equations in the context of generalized gravity
theories. Our general theory considers an arbitrary number of scalar fields
generally coupled with the gravity, an arbitrary number of mutually interacting
hydrodynamic fluids, and components described by the relativistic Boltzmann
equations like massive/massless collisionless particles and the photon with the
accompanying polarizations. We also include direct interactions among fluids
and fields. The background FLRW model includes the general spatial curvature
and the cosmological constant. We consider three different types of
perturbations, and all the scalar-type perturbation equations are arranged in a
gauge-ready form so that one can implement easily the convenient gauge
conditions depending on the situation. In the numerical calculation of the
Boltzmann equations we have implemented four different gauge conditions in a
gauge-ready manner where two of them are new. By comparing solutions solved
separately in different gauge conditions we can naturally check the numerical
accuracy.Comment: 26 pages, 9 figures, revised thoroughly, to appear in Phys. Rev.
Radial asymptotics of Lemaitre-Tolman-Bondi dust models
We examine the radial asymptotic behavior of spherically symmetric
Lemaitre-Tolman-Bondi dust models by looking at their covariant scalars along
radial rays, which are spacelike geodesics parametrized by proper length
, orthogonal to the 4-velocity and to the orbits of SO(3). By introducing
quasi-local scalars defined as integral functions along the rays, we obtain a
complete and covariant representation of the models, leading to an initial
value parametrization in which all scalars can be given by scaling laws
depending on two metric scale factors and two basic initial value functions.
Considering regular "open" LTB models whose space slices allow for a diverging
, we provide the conditions on the radial coordinate so that its
asymptotic limit corresponds to the limit as . The "asymptotic
state" is then defined as this limit, together with asymptotic series expansion
around it, evaluated for all metric functions, covariant scalars (local and
quasi-local) and their fluctuations. By looking at different sets of initial
conditions, we examine and classify the asymptotic states of parabolic,
hyperbolic and open elliptic models admitting a symmetry center. We show that
in the radial direction the models can be asymptotic to any one of the
following spacetimes: FLRW dust cosmologies with zero or negative spatial
curvature, sections of Minkowski flat space (including Milne's space), sections
of the Schwarzschild--Kruskal manifold or self--similar dust solutions.Comment: 44 pages (including a long appendix), 3 figures, IOP LaTeX style.
Typos corrected and an important reference added. Accepted for publication in
General Relativity and Gravitatio
Ultra-Fast Flash Observatory: Fast Response Space Missions for Early Time Phase of Gamma Ray Bursts
One of the unexplored domains in the study of gamma-ray bursts (GRBs) is the early time
phase of the optical light curve. We have proposed Ultra-Fast Flash Observatory (UFFO) to
address this question through extraordinary opportunities presented by a series of small
space missions. The UFFO is equipped with a fast-response Slewing Mirror Telescope that
uses a rapidly moving mirror or mirror array to redirect the optical beam rather than
slewing the entire spacecraft or telescope to aim the optical instrument at the GRB
position. The UFFO will probe the early optical rise of GRBs with sub-second response, for
the first time, opening a completely new frontier in GRB and transient studies. Its fast
response measurements of the optical emission of dozens of GRB each year will provide
unique probes of the burst mechanism and test the prospect of GRB as a new standard
candle, potentially opening up the z > 10 universe. We describe the current limit in
early photon measurements, the aspects of early photon physics, our soon-to-be-launched
UFFO-pathfinder mission, and our next planned mission, the UFFO-100
Reexamining nonstandard interaction effects on supernova neutrino flavor oscillations
Several extensions of the standard electroweak model allow new four-fermion
interactions (nu_a nu_b * ff) with strength eps_ab*G_F, where (a,b) are flavor
indices. We revisit their effects on flavor oscillations of massive
(anti)neutrinos in supernovae, in order to achieve, in the region above the
protoneutron star, an analytical treatment valid for generic values of the
neutrino mixing angles (omega,phi,psi)=(theta_12,theta_13,theta_23). Assuming
that eps_ab<<1, we find that the leading effects on the flavor transitions
occurring at high (H) and low (L) density along the supernova matter profile
can be simply embedded through the replacements phi-->phi+eps_H and
omega-->omega+eps_L, respectively, where eps_H and eps_L are specific linear
combinations of the eps_ab's. Similar replacements hold for eventual
oscillations in the Earth matter. From a phenomenological point of view, the
most relevant consequence is a possible uncontrolled bias (phi-->phi+eps_H) in
the value of the mixing angle phi inferred by inversion of supernova neutrino
data. Such a drawback, however, does not preclude the discrimination of the
neutrino mass spectrum hierarchy (direct or inverse) through supernova neutrino
oscillations.Comment: Text clarified, one figure added. To appear in PR
The International Pulsar Timing Array: First data release
International audienceThe highly stable spin of neutron stars can be exploited for a variety of (astro)physical investigations. In particular, arrays of pulsars with rotational periods of the order of milliseconds can be used to detect correlated signals such as those caused by gravitational waves. Three such 'pulsar timing arrays' (PTAs) have been set up around the world over the past decades and collectively form the 'International' PTA (IPTA). In this paper, we describe the first joint analysis of the data from the three regional PTAs, i.e. of the first IPTA data set. We describe the available PTA data, the approach presently followed for its combination and suggest improvements for future PTA research. Particular attention is paid to subtle details (such as underestimation of measurement uncertainty and long-period noise) that have often been ignored but which become important in this unprecedentedly large and inhomogeneous data set. We identify and describe in detail several factors that complicate IPTA research and provide recommendations for future pulsar timing efforts. The first IPTA data release presented here (and available on-line) is used to demonstrate the IPTA's potential of improving upon gravitational-wave limit
Wave-Particle Studies in the Ion Cyclotron and Lower Hybrid Range of Frequencies in Alcator C-Mod
- …
