71 research outputs found

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    Pharmacogenomics study of thiazide diuretics and QT interval in multi-ethnic populations: the cohorts for heart and aging research in genomic epidemiology

    Get PDF
    Thiazide diuretics, commonly used antihypertensives, may cause QT interval (QT) prolongation, a risk factor for highly fatal and difficult to predict ventricular arrhythmias. We examined whether common single-nucleotide polymorphisms (SNPs) modified the association between thiazide use and QT or its component parts (QRS interval, JT interval) by performing ancestry-specific, transethnic and cross-phenotype genome-wide analyses of European (66%), African American (15%) and Hispanic (19%) populations (N = 78 199), leveraging longitudinal data, incorporating corrected standard errors to account for underestimation of interaction estimate variances and evaluating evidence for pathway enrichment. Although no loci achieved genome-wide significance (P < 5 x 10(-8)), we found suggestive evidence (P < 5 x 10(-6)) for SNPs modifying the thiazide-QT association at 22 loci, including ion transport loci (for example, NELL1, KCNQ3). The biologic plausibility of our suggestive results and simulations demonstrating modest power to detect interaction effects at genome-wide significant levels indicate that larger studies and innovative statistical methods are warranted in future efforts evaluating thiazide-SNP interactions

    Ceylonins G–I: spongian diterpenes from the marine sponge Spongia ceylonensis

    Get PDF
    Three new spongian diterpenes, ceylonins G–I (1–3), were isolated from the marine sponge Spongia ceylonensis collected in Indonesia, together with five known spongian diterpenes (4–8). Only 4 inhibited USP7 with an IC50 value of 8.2 ÎŒM

    Effect of Nanoencapsulated Alginate-Synbiotic on Gut Microflora Balance, Immunity, and Growth Performance of Growing Rabbits

    No full text
    A synbiotic comprising Saccharomyces cerevisiae yeast (SCY) and Moringa oleifera leaf extract (MOLE) has been encapsulated using nanotechnology. This duo is used as a dietary supplement for growing rabbits. Physicochemical analyses, in vitro antimicrobial activity, and gastrointestinal system evaluation were used to evaluate the quality of the nanofabricated synbiotic. The in vivo study was conducted using 40-day-old male growing rabbits (n = 16 rabbits/group) to evaluate the effect of the nanofabricated synbiotic on the health and growth performance of examined rabbits. Rabbits were equally allocated into four groups; (a) NCS, which received a basal diet supplemented with a noncapsulated 11 × 1012 CFU SCY + 0.15 g MOLE/kg diet, (b) LCS: those receiving a nanoencapsulated 5.5 × 1012 CFU SCY + 0.075 g MOLE/kg diet, (c) HCS: those receiving an 11 × 1012 CFU SCY + 0.15 g MOLE/kg diet, and (d) CON: those receiving a basal diet without treatment (control). The treatments continued from day 40 to day 89 of age. During the experimental period, growth performance variables, including body weight (BW), feed consumption, BW gain, and feed conversion ratio were recorded weekly. Blood samples were collected on day 40 of age and immediately before the start of the treatments to confirm the homogeneity of rabbits among groups. On day 89 of age, blood samples, intestinal, and cecal samples were individually collected from eight randomly selected rabbits. The size and polydispersity index of the nanofabricated synbiotic were 51.38 nm and 0.177, respectively. Results revealed that the encapsulation process significantly improved yeast survival through the gastrointestinal tract, specifically in stomach acidic conditions, and significantly increased in vitro inhibitory activities against tested pathogens. Furthermore, treatments had no negative effects on hematobiochemical variables but significantly improved levels of blood plasma, total protein, and insulin-like growth factor-l. Compared to the CON, NCS, and LCS treatments, the HCS treatment increased the amount of intestinal and cecal yeast cells (p Lactobacillus bacteria (p Salmonella (p Coliform (p = 0.08) bacteria. Likewise, both LCS and HCS significantly improved the small intestine and cecum lengths compared to CON and NCS. The HCS treatment also significantly improved BW gain and feed conversion compared to CON treatment, whereas the NCS and LCS treatments showed intermediate values. Conclusively, the nanoencapsulation process improved the biological efficiency of the innovative synbiotic used in this study. A high dose of encapsulated synbiotic balanced the gut microflora, resulting in the growth of rabbits during the fattening period

    Removal of cadmium from aqueous solution using marine green algae, Ulva lactuca

    Get PDF
    The present study aimed to evaluate the efficiency of marine algae for removal of metals from the aqueous solution. The green alga, Ulva lactuca, collected from the intertidal zone of the Suez Bay, northern part of the Red Sea was used to reduce cadmium levels from the aqueous solutions. The biosorption mechanisms of Cd2+ ions onto the algal tissues were examined using various analytical techniques: Fourier-transform infrared spectroscopy (FT-IR) and Scanning electron microscopy (SEM). Results indicated that at the optimum pH value of 5.5; about 0.1 g of U. lactuca was enough to remove 99.2% of 10 mg L−1 Cd2+ at 30 °C in the aqueous solutions. The equilibrium data were well fitted with the Langmuir and Freundlich isotherms. The monolayer adsorption capacity was 29.1 mg g−1. The calculated RL and ‘n’ values have proved the favorability of cadmium adsorption onto U. lactuca. The desorption test revealed that HCl was the best for the elution of metals from the tested alga. In conclusion, the seaweed U. lactuca was the favorable alternative of cadmium removal from water

    Reproductive Performance of Barki Rams Fed on Different Omega-6: Omega-3 Ratios

    No full text
    The current experiment intended to investigate the impact of various dietary omega- 6/ omega -3 fatty acids ratios (FAs) on the reproductive performance and  serum lipid profile  in male Barki sheep over two months' experimental period. Twelve males were randomly allotted into 4 equal groups receiving 4 different ratios of omega-6/ omega- 3 FAs including 5.40 (higher ratio, HR), 4.56 (medium ratio, MR), 3.13 (lower ratio, LR) and 1.76 (very low ratio, VLR):1.  Feeding rams on diets with HR or VLR did not exhibit substantial impact on the sperm motility, sperm viability and testosterone hormone, however these parameters were non-significantly improved in the MR and LR- fed rams. The semen volume was significantly increased (P &lt; 0.05) with the MR in comparison with the remaining groups.  Serum biochemical parameters, including total lipids, HDL concentrations did not exhibit significant differences (P&gt; 0.05) among the different ratios. VLR- fed rams showed the higher serum total cholesterol, triglyceride, LDL and VLDL (P&lt; 0.05), while the MR fed rams showed the highest CHO/HDL ratio (P&lt; 0.05) in comparison with the other ratios. In summary, Barki rams fed different omega-6/ omega- 3 PUFA ratios (5.4, 4.56, 3.13 and 1.76:1) containing diets exhibited no significant difference in their reproductive performance parameters, however the medium (4.56:1) and low (3.13:1) ratios showed potential improving effect
    • 

    corecore