11 research outputs found

    Tough on Scholarship

    Get PDF
    This series of three articles (that\u27s why it\u27s a trilogy, duh-h-h) chronicles the legal-academic career of one S. Breckinridge Tushingham ( Breck for short). As the trilogy unfolds, Breck works his way up (or maybe it\u27s down) from his first academic position to an established professorship to dean of the South Soybean (Soso) State University law school. In the process of recording his professional history, and thus memorializing it for the ages, Breck provides (probably defamatory) insights into the American legal academy

    Field measurements of methylglyoxal using proton transfer reaction time-of-flight mass spectrometry and comparison to the DNPH–HPLC–UV method

    Get PDF
    Methylglyoxal (MGLY) is an important atmospheric α-dicarbonyl species for which photolysis acts as a significant source of peroxy radicals, contributing to the oxidizing capacity of the atmosphere and, as such, the formation of secondary pollutants such as organic aerosols and ozone. However, despite its importance, only a few techniques exhibit time resolutions and detection limits that are suitable for atmospheric measurements.This study presents the first field measurements of MGLY by proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) performed during the ChArMEx SOP2 field campaign. This campaign took place at a Mediterranean site characterized by intense biogenic emissions and low levels of anthropogenic trace gases. Concomitant measurements of MGLY were performed using the 2,4-dinitrophenylhydrazine (DNPH) derivatization technique and high performance liquid chromatography (HPLC) with UV detection. PTR-ToF-MS and DNPH–HPLC measurements were compared to determine whether these techniques can perform reliable measurements of MGLY.Ambient time series revealed levels of MGLY ranging from 28 to 365&thinsp;pptv, with a clear diurnal cycle due to elevated concentrations of primary biogenic species during the daytime, and its oxidation led to large production rates of MGLY. A scatter plot of the PTR-ToF-MS and DNPH–HPLC measurements indicates a reasonable correlation (R2 = 0.48) but a slope significantly lower than unity (0.58±0.05) and a significant intercept of 88.3±8.0&thinsp;pptv. A careful investigation of the differences between the two techniques suggests that this disagreement is not due to spectrometric interferences from H3O+(H2O)3 or methyl ethyl ketone (or butanal) detected at m∕z 73.050 and m∕z 73.065, respectively, which are close to the MGLY m∕z of 73.029. The differences are more likely due to uncorrected sampling artifacts such as overestimated collection efficiency or loss of MGLY into the sampling line for the DNPH–HPLC technique or unknown isobaric interfering compounds such as acrylic acid and propanediol for the PTR-ToF-MS.Calculations of MGLY loss rates with respect to OH oxidation and direct photolysis indicate similar contributions for these two loss pathways.</p

    Intermediate water links to Deep Western Boundary Current variability in the subtropical NW Atlantic during marine isotope stages 5 and 4

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 22 (2007): PA3209, doi:10.1029/2006PA001409.Records from Ocean Drilling Program Sites 1057 and 1059 (2584 m and 2985 m water depth, respectively) have been used to reconstruct the behavior of the Deep Western Boundary Current (DWBC) on the Blake Outer Ridge (BOR) from 130 to 60 kyr B.P. (marine isotope stage (MIS) 5 and the 5/4 transition). Site 1057 lies within Labrador Sea Water (LSW) but close to the present-day boundary with Lower North Atlantic Deep Water (LNADW), while Site 1059 lies within LNADW. High-resolution sortable silt mean (inline equation) grain size and benthic ÎŽ 13C records were obtained, and changes in the DWBC intensity and spatial variability were inferred. Comparisons are made with similar proxy records generated for the Holocene from equivalent depth cores on the BOR. During MIS 5e, inline equation evidence at Site 1057 suggests slower relative flow speeds consistent with a weakening and a possible shoaling of the LSW-sourced shallower limb of the DWBC that occupies these depths today. In contrast, the paleocurrent record from the deeper site suggests that the fast flowing deep core of the DWBC was located close to its modern depth below 3500 m. During this interval the benthic ÎŽ 13C suggests little chemical stratification of the water column and the presence of a near-uniform LNADW-dominated water mass. After ∌111 kyr B.P. the inline equation record at Site 1057 increases to reach values similar to Site 1059 for the rest of MIS 5. The strengthening of flow speeds at the shallow site may correspond to the initiation of Glacial North Atlantic Intermediate Water formation also suggested by a divergence in the benthic ÎŽ 13C records with Site 1057 values increasing to ∌1.2‰. Coupled suborbital oscillations in DWBC flow variability and paleohydrography persisted throughout MIS 5. Comparison of these data with planktonic ÎŽ 18O records from the sites and alkenone-derived sea surface temperature (SST) estimates from the nearby Bermuda Rise suggest a hitherto unrecognized degree of linkage between oscillations in subtropical North Atlantic SST and DWBC flow.This work was funded by the United Kingdom Natural Environment Research Council and supported by the NERC Radiocarbon Laboratory

    Fine particles sampled at an urban background site and an industrialized coastal site in Northern France—Part 2: Comparison of offline and online analyses for carbonaceous aerosols

    No full text
    <p>Particulate matter was sampled in Northern France during two summer and winter periods at both an urban background site (Douai, DO) and an industrialized coastal site (Grande-Synthe, GS). Ambient levels of particulate carbonaceous species and Polycyclic Aromatic Hydrocarbons (PAH) were measured by real-time measurements and via collection and analysis of offline filters (F). The comparison between online organic matter (OM) measured by an Aerosol Mass Spectrometer (AMS) and organic carbon (OC) determined by an offline thermal-optical method showed good linear trends in wintertime GS (<i>r</i><sup>2</sup> = 0.82 while only 0.50 in summer), and DO (<i>r</i><sup>2</sup> = 0.86 in summer and 0.92 in winter). However, significant differences were observed between analytical methods and sites with OC<sub>AMS</sub>/OC<sub>F</sub> ratios decreasing from 0.80 in DO during winter to ≈0.20 for GS in summer, suggesting that a large part of OM could be in the PM<sub>1</sub>–PM<sub>2.5</sub> fraction. The simultaneous measurements of Black Carbon (BC) and Elemental Carbon (EC) concentrations in PM<sub>2.5</sub> were also well correlated at both sites with <i>r</i><sup>2</sup> = 0.61–0.97 and slopes between 0.6 and 0.8. PAHs were analyzed in PM<sub>2.5</sub> and also measured online by AMS in PM<sub>1</sub>. Their wintertime concentrations were highly correlated in DO (<i>r</i><sup>2</sup> = 0.98) and to a lesser degree in GS (<i>r</i><sup>2</sup> = 0.67). <i>r</i><sup>2</sup> values determined for comparison between online and offline parameters (OC and PAHs) in GS were lower than in DO, probably due to a more complex aerosol composition and a higher variability of the physical and chemical properties resulting from the coastal situation and diversity of emission sources in the vicinity of GS.</p> <p>Copyright © 2018 American Association for Aerosol Research</p

    Driving parameters of biogenic volatile organic compounds and consequences on new particle formation observed at an eastern Mediterranean background site

    Get PDF
    International audienceAs a part of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) and Cyprus Aerosols and Gas Precursors (ENVI-Med CyAr) programs, this study aims primarily to provide an improved understanding of the sources and the fate of volatile organic compounds (VOCs) in the eastern Mediterranean. More than 60 VOCs, including bio-genic species (isoprene and eight monoterpenes) and oxy-genated VOCs, were measured during a 1-month intensive field campaign performed in March 2015 at the Cyprus Atmospheric Observatory (CAO), a regional background site in Cyprus. VOC measurements were conducted using complementary online and offline techniques. Biogenic VOCs (BVOCs) were principally imputed to local sources and characterized by compound-specific daily cycles such as diur-nal maximum for isoprene and nocturnal maximum for α-and ÎČ-pinenes, in connection with the variability of emission sources. The simultaneous study of pinene and iso-prene temporal evolution and meteorological parameters has shown that BVOC emissions were mainly controlled by ambient temperature, precipitation and relative humidity. It was found that isoprene daytime emissions at CAO depended on temperature and solar radiation changes, whereas nocturnal BVOC concentrations (e.g., from oak and pine forests) were more prone to the relative humidity and temperature changes. Significant changes in monoterpene mixing ratios occurred during and after rainfall. The second part of the study focused on new particle formation (NPF) events at CAO. BVOCs are known to potentially play a role in the growth as well as in the early stages of formation of new atmospheric particles. Based on observations of the particle size distribution performed with a differential mobility particle sizer (DMPS) and the total number concentrations of particles larger than 1 nm diameter measured by particle size magnifier (PSM), NPF events were found on 14 out of 20 days of the field campaign. For all possible proxy parameters (meteorological parameters, calculated H 2 SO 4 and measured gaseous compounds) having a role in NPF, we present daily variations of different classes during nucleation event and non-event days. NPF can occur at various condensational sink (CS) values and both under polluted and clean atmospheric conditions. High H 2 SO 4 concentrations coupled with high BVOC concentrations seemed to be one of the most favorable conditions Published by Copernicus Publications on behalf of the European Geosciences Union. 14298 C. Debevec et al.: Biogenic VOCs at an eastern Mediterranean background site to observe NPF at CAO in March 2015. NPF event days were characterized by either (1) a predominant anthropogenic influence (high concentrations of anthropogenic source trac-ers observed), (2) a predominant biogenic influence (high BVOC concentrations coupled with low anthropogenic tracer concentrations), (3) a mixed influence (high BVOC concentrations coupled with high anthropogenic tracer concentrations) and (4) a marine influence (both low BVOC and an-thropogenic tracer concentrations). More pronounced NPF events were identified during mixed anthropogenic-biogenic conditions compared to the pure anthropogenic or biogenic ones, for the same levels of precursors. Analysis of a specific NPF period of the mixed influence type highlighted that BVOC interactions with anthropogenic compounds enhanced nucleation formation and growth of newly formed particles. During this period, the nucleation-mode particles may be formed by the combination of high H 2 SO 4 and iso-prene amounts, under favorable meteorological conditions (high temperature and solar radiation and low relative humidity) along with low CS. During the daytime, growth of the newly formed particles, not only sulfate but also oxygen-like organic aerosol (OOA) mass contributions, increased in the particle phase. High BVOC concentrations were observed during the night following NPF events, accompanied by an increase in CS and in semi-volatile OOA contributions, suggesting further BVOC contribution to aerosol nighttime growth by condensing onto pre-existing aerosols

    Centennial- to millennial-scale ice-ocean interactions in the subpolar Northeast Atlantic 18-41 kyr ago

    Get PDF
    In order to monitor the evolution of the British-Irish Ice Sheet (BIIS) and its influence in surface ocean structure during marine isotopic stages (MIS) 2 and 3, we have analyzed the sediments recovered in core MD04-2829CQ (Rosemary Bank, north Rockall Trough, northeast Atlantic) dated between similar to 41 and similar to 18 ka B.P. Ice-rafted debris flux and composition, (40)Ar/(39)Ar ages of individual hornblende grains, multispecies planktonic stable isotope records, planktonic foraminifera assemblage data and faunal-based sea surface temperatures (SSTs) demonstrate a close interaction between BIIS dynamics and surface ocean structure and water properties in this region. The core location lies beneath the North Atlantic Current (NAC) and is ideal for monitoring the shifts in the position of its associated oceanic fronts, as recorded by faunal changes. These data reveal a succession of BIIS-sourced iceberg calving events related to low SST, usually synchronous with dramatic changes in the composition of the planktonic foraminifera assemblage and with variations in the stable isotope records of the taxa Neogloboquadrina pachyderma (sinistral coiling) and Globigerina bulloides. The pacing of the calving events, from typically Dansgaard-Oeschger millennial timescales during late MIS 3 to multicentennial cyclicity from similar to 28 ka B.P., represents the build-up of the BIIS and its growing instability toward Heinrich Event (HE) 2 and the Last Glacial Maximum. Our data confirm the strong coupling between BIIS instabilities and the temperature and salinity of surface waters in the adjacent northeast Atlantic and demonstrate the BIIS's ability to modify the NAC on its flow toward the Nordic Seas. In contrast, subsurface water masses were less affected except during the Greenland stadials that contain HEs, when most intense water column reorganizations occurred simultaneously with the deposition of cream-colored carbonate sourced from the Laurentide Ice Sheet
    corecore