1,323 research outputs found
A Novel, Fast, Reliable, and Data-Driven Method for Simultaneous Single-Trial Mining and Amplitude—Latency Estimation Based on Proximity Graphs and Network Analysis
Both amplitude and latency of single-trial EEG/MEG recordings provide valuable information regarding functionality of the human brain. In this article, we provided a data-driven graph and network-based framework for mining information from multi-trial event-related brain recordings. In the first part, we provide the general outline of the proposed methodological approach. In the second part, we provide a more detailed illustration, and present the obtained results on every step of the algorithmic procedure. To justify the proposed framework instead of presenting the analytic data mining and graph-based steps, we address the problem of response variability, a prerequisite to reliable estimates for both the amplitude and latency on specific N/P components linked to the nature of the stimuli. The major question addressed in this study is the selection of representative single-trials with the aim of uncovering a less noisey averaged waveform elicited from the stimuli. This graph and network-based algorithmic procedure increases the signal-to-noise (SNR) of the brain response, a key pre-processing step to reveal significant and reliable amplitude and latency at a specific time after the onset of the stimulus and with the right polarity (N or P). We demonstrated the whole approach using electroencephalography (EEG) auditory mismatch negativity (MMN) recordings from 42 young healthy controls. The method is novel, fast and data-driven succeeding first to reveal the true waveform elicited by MMN on different conditions (frequency, intensity, duration, etc.). The proposed graph-oriented algorithmic pipeline increased the SNR of the characteristic waveforms and the reliability of amplitude and latency within the adopted cohort. We also demonstrated how different EEG reference schemes (REST vs. average) can influence amplitude-latency estimation. Simulation results revealed robust amplitude-latency estimations under different SNR and amplitude-latency variations with the proposed algorithm
Mining time-resolved functional brain graphs to an EEG-based chronnectomic brain aged index (CBAI)
The brain at rest consists of spatially and temporal distributed but functionally connected regions that called intrinsic connectivity networks (ICNs). Resting state electroencephalography (rs-EEG) is a way to characterize brain networks without confounds associated with task EEG such as task difficulty and performance. A novel framework of how to study dynamic functional connectivity under the notion of functional connectivity microstates (FCμstates) and symbolic dynamics is further discussed. Furthermore, we introduced a way to construct a single integrated dynamic functional connectivity graph (IDFCG) that preserves both the strength of the connections between every pair of sensors but also the type of dominant intrinsic coupling modes (DICM). The whole methodology is demonstrated in a significant and unexplored task for EEG which is the definition of an objective Chronnectomic Brain Aged index (CBAI) extracted from resting-state data (N = 94 subjects) with both eyes-open and eyes-closed conditions. Novel features have been defined based on symbolic dynamics and the notion of DICM and FCμstates. The transition rate of FCμstates, the symbolic dynamics based on the evolution of FCμstates (the Markovian Entropy, the complexity index), the probability distribution of DICM, the novel Flexibility Index that captures the dynamic reconfiguration of DICM per pair of EEG sensors and the relative signal power constitute a valuable pool of features that can build the proposed CBAI. Here we applied a feature selection technique and Extreme Learning Machine (ELM) classifier to discriminate young adults from middle-aged and a Support Vector Regressor to build a linear model of the actual age based on EEG-based spatio-temporal features. The most significant type of features for both prediction of age and discrimination of young vs. adults age groups was the dynamic reconfiguration of dominant coupling modes derived from a subset of EEG sensor pairs. Specifically, our results revealed a very high prediction of age for eyes-open (R2 = 0.60; y = 0.79x + 8.03) and lower for eyes-closed (R2 = 0.48; y = 0.71x + 10.91) while we succeeded to correctly classify young vs. middle-age group with 97.8% accuracy in eyes-open and 87.2% for eyes-closed. Our results were reproduced also in a second dataset for further external validation of the whole analysis. The proposed methodology proved valuable for the characterization of the intrinsic properties of dynamic functional connectivity through the age untangling developmental differences using EEG resting-state recordings
Causal interactions between Frontalθ – Parieto-Occipitalα2 predict performance on a mental arithmetic task
Many neuroimaging studies have demonstrated the different functional contributions of spatially distinct brain areas to working memory (WM) subsystems in cognitive tasks that demand both local information processing and interregional coordination. In WM cognitive task paradigms employing electroencephalography (EEG), brain rhythms such as θ and α have been linked to specific functional roles over given brain areas, but their functional coupling has not been extensively studied. Here we analyzed an arithmetic task with five cognitive workload levels (CWLs) and demonstrated functional/effective coupling between the two WM subsystems: the central executive located over frontal (F) brain areas that oscillates on the dominant θ rhythm (Frontalθ/Fθ) and the storage buffer located over parieto-occipital (PO) brain areas that operates on the α2 dominant brain rhythm (Parieto-Occipitalα2/POα2). We focused on important differences between and within WM subsystems in relation to behavioral performance. A repertoire of brain connectivity estimators was employed to elucidate the distinct roles of amplitude, phase within and between frequencies, and the hierarchical role of functionally specialized brain areas related to the task. Specifically, for each CWL, we conducted a) a conventional signal power analysis within both frequency bands at Fθ and POα2, b) the intra- and inter-frequency phase interactions between Fθ and POα2, and c) their causal phase and amplitude relationship. We found no significant statistical difference of signal power or phase interactions between correct and wrong answers. Interestingly, the study of causal interactions between Fθ and POα2 revealed frontal brain region(s) as the leader, while the strength differentiated between correct and wrong responses in every CWL with absolute accuracy. Additionally, zero time-lag between bilateral Fθ and right POa2 could serve as an indicator of mental calculation failure. Overall, our study highlights the significant role of coordinated activity between Fθ and POα2 via their causal interactions and the timing for arithmetic performance
Applying Recommendations to Align Competences, Methodology, and Assessment in Telematics, Computing, and Electronic Engineering Courses
The alignment between competences, teachinglearning
methodologies, and assessment is a key element of European
higher education. This paper presents the efforts carried
out by six telematics, computer science and electronic engineering
education teachers toward achieving this alignment in their
subjects. In a joint work with pedagogues, a set of recommended
actions are identified. A selection of these actions are applied and
evaluated in the six subjects. The cross analysis of the results
indicates that the actions allow students to better understand
the methodologies and assessments planned for the subjects,
facilitate (self-) regulation, and increase students’ involvement
in the subjects
Altered cross-frequency coupling in resting-state MEG after mild traumatic brain injury
Cross-frequency coupling (CFC) is thought to represent a basic mechanism of functional integration of neural networks across distant brain regions. In this study, we analyzed CFC profiles from resting state Magnetoencephalographic (MEG) recordings obtained from 30 mild traumatic brain injury (mTBI) patients and 50 controls. We used mutual information (MI) to quantify the phase-to-amplitude coupling (PAC) of activity among the recording sensors in six nonoverlapping frequency bands. After forming the CFC-based functional connectivity graphs, we employed a tensor representation and tensor subspace analysis to identify the optimal set of features for subject classification as mTBI or control. Our results showed that controls formed a dense network of stronger local and global connections indicating higher functional integration compared to mTBI patients. Furthermore, mTBI patients could be separated from controls with more than 90% classification accuracy. These findings indicate that analysis of brain networks computed from resting-state MEG with PAC and tensorial representation of connectivity profiles may provide a valuable biomarker for the diagnosis of mTBI
The added value of implementing the Planet Game scenario with Collage and Gridcole
This paper discusses the suitability and the added value of Collage and Gridcole when contrasted with other solutions participating in the ICALT 2006 workshop titled “Comparing educational modelling languages on a case study.” In this workshop each proposed solution was challenged to implement a Computer-Supported Collaborative Learning situation (CSCL) posed by the workshop’s organizers. Collage is a pattern-based authoring tool for the creation of CSCL scripts compliant with IMS Learning Design (IMS LD). These IMS LD scripts can be enacted by the Gridcole tailorable CSCL system. The analysis presented in the paper is organized as a case study which considers the data recorded in the workshop discussion as well the information reported in the workshop contributions. The results of this analysis show how Collage and Gridcole succeed in implementing the scenario and also point out some significant advantages in terms of design reusability and generality, user-friendliness, and enactment flexibility
Improving the detection of mtbi via complexity analysis in resting - state magnetoencephalography
Diagnosis of mild Traumatic Brain Injury (mTBI) is difficult due to the variability of obvious brain lesions using imaging scans. A promising tool for exploring potential biomarkers for mTBI is magnetoencephalography which has the advantage of high spatial and temporal resolution. By adopting proper analytic tools from the field of symbolic dynamics like Lempel-Ziv complexity, we can objectively characterize neural network alterations compared to healthy control by enumerating the different patterns of a symbolic sequence. This procedure oversimplifies the rich information of brain activity captured via MEG. For that reason, we adopted neural-gas algorithm which can transform a time series into more than two symbols by learning brain dynamics with a small reconstructed error. The proposed analysis was applied to recordings of 30 mTBI patients and 50 normal controls in δ frequency band. Our results demonstrated that mTBI patients could be separated from normal controls with more than 97% classification accuracy based on high complexity regions corresponding to right frontal areas. In addition, a reverse relation between complexity and transition rate was demonstrated for both groups. These findings indicate that symbolic complexity could have a significant predictive value in the development of reliable biomarkers to help with the early detection of mTBI
“Working there is amazing, but life here is better”: Imaginaries of onward migration destinations among Albanian migrant construction workers in Italy and Greece
- …
