12 research outputs found

    Imbalance between pro and anti-oxidant mechanisms in perivascular adipose tissue aggravates long-term high-fat diet-derived endothelial dysfunction

    Full text link
    Background: The hypothesis of this study is that long-term high-fat diets (HFD) induce perivascular adipose tissue (PVAT) dysfunction characterized by a redox imbalance, which might contribute to aggravate endothelial dysfunction in obesity. Methods and Results: C57BL/6J mice were fed either control or HFD (45% kcal from fat) for 32 weeks. Body weight, lumbar and mesenteric adipose tissue weights were significantly higher in HFD animals compared to controls. The anticontractile effect of PVAT in mesenteric arteries (MA) was lost after 32 week HFD and mesenteric endothelial-dependent relaxation was significantly impaired in presence of PVAT in HFD mice (Emax = 71.0±5.1 vs Emax = 58.5±4.2, p<0.001). The inhibitory effect of L-NAME on Ach-induced relaxation was less intense in the HFD group compared with controls suggesting a reduction of endothelial NO availability. Expression of eNOS and NO bioavailability were reduced in MA and almost undetectable in mesenteric PVAT of the HFD group. Superoxide levels and NOX activity were higher in PVAT of HFD mice. Apocynin only reduced contractile responses to NA in HFD animals. Expression of ec-SOD and total SOD activity were significantly reduced in PVAT of HFD mice. No changes were observed in Mn-SOD, Cu/Zn-SOD or catalase. The ratio [GSSG]/([GSH]+[GSSG]) was 2-fold higher in the mesenteric PVAT from HFD animals compared to controls. Conclusions: We suggest that the imbalance between pro-oxidant (NOX, superoxide anions, hydrogen peroxide) and antioxidant (eNOS, NO, ecSOD, GSSG) mechanisms in PVAT after long-term HFD might contribute to the aggravation of endothelial dysfunctionThis work was supported by grants from Ministerio de Ciencia e Investigación (BFU2011-25303), Ministerio de Economía y Competitividad (SAF2009- 09714, SAF2011-25303, BFU2012-35353), Grupos Universidad Complutense de Madrid (UCM; GR-921641), Fundación Universitaria San Pablo-CEU, Fundación Mutua Madrileña and Sociedad para el Estudio de la Salud Cardiometabólica (SESCAMET). MGO and CFG-P are supported by Ministerio de Educación y Cienci

    Beneficial Effect of Bariatric Surgery on Abnormal MMP-9 and AMPK Activities: Potential Markers of Obesity-Related CV Risk

    Get PDF
    Bariatric surgery (BS) results in sustained weight loss and may reverse inflammation, metabolic alterations, extracellular matrix remodeling and arterial stiffness. We hypothesize that increased stiffening in omental arteries from obese patients might be associated with an increase in MMP activity and a decrease in p-AMPK, together with systemic oxidative stress and inflammation. Moreover, BS could contribute to reversing these alterations. This study was conducted with 38 patients of Caucasian origin: 31 adult patients with morbid obesity (9 men and 22 women; mean age 46 years and BMI = 42.7 ± 1.0 kg/m2) and 7 non-obese subjects (7 women; mean age 45 years and BMI = 22.7 ± 0.6 kg/m2). Seventeen obese patients were studied before and 12 months after BS. The stiffness index β, an index of intrinsic arterial stiffness, was determined in omental arteries and was significantly higher in obese patients. Levels of phosphorylated AMPK (p-AMPKThr-172) and SIRT-1 were significantly lower in peripheral blood mononuclear cells (PBMCs) from obese patients than those from non-obese patients (p &lt; 0.05) and were normalized after BS. Total and active MMP-9 activities, LDH, protein carbonyls and uric acid were higher in obese patients and reduced by BS. Moreover, there was a correlation between plasmatic LDH levels and the stiffness index β. BS has a beneficial effect on abnormal MMP-9, LDH and AMPK activities that might be associated with the development of arterial stiffness in obese patients. Since these parameters are easily measured in blood samples, they could constitute potential biomarkers of cardiovascular risk in morbid obesity

    A novel KCNQ4 pore-region mutation (p.G296S) causes deafness by impairing cell-surface channel expression

    No full text
    Mutations in the potassium channel gene KCNQ4 underlie DFNA2, a subtype of autosomal dominant progressive, high-frequency hearing loss. Based on a phenotype-guided mutational screening we have identified a novel mutation c.886G>A, leading to the p.G296S substitution in the pore region of KCNQ4 channel. The possible impact of this mutation on total KCNQ4 protein expression, relative surface expression and channel function was investigated. When the G296S mutant was expressed in Xenopus oocytes, electrophysiological recordings did not show voltage-activated K+ currents. The p.G296S mutation impaired KCNQ4 channel activity in two manners. It greatly reduced surface expression and, secondarily, abolished channel function. The deficient expression at the cell surface membrane was further confirmed in non-permeabilized NIH-3T3 cells transfected with the mutant KCNQ4 tagged with the hemagglutinin epitope in the extracellular S1-S2 linker. Co-expression of mutant and wild type KCNQ4 in oocytes was performed to mimic the heterozygous condition of the p.G296S mutation in the patients. The results showed that the G296S mutant exerts a strong dominant-negative effect on potassium currents by reducing the wild type KCNQ4 channel expression at the cell surface. This is the first study to identify a trafficking-dependent dominant mechanism for the loss of KCNQ4 channel function in DFNA2. © Springer-Verlag 2007.Peer Reviewe

    The specific seroreactivity to ∆Np73 isoforms shows higher diagnostic ability in colorectal cancer patients than the canonical p73 protein

    No full text
    © The Author(s) 2019.The p53-family is tightly regulated at transcriptional level. Due to alternative splicing, up to 40 different theoretical proteoforms have been described for p73 and at least 20 and 10 for p53 and p63, respectively. However, only the canonical proteins have been evaluated as autoantibody targets in cancer patients for diagnosis. In this study, we have cloned and expressed in vitro the most upregulated proteoforms of p73, ΔNp73α and ΔNp73β, for the analysis of their seroreactivity by a developed luminescence based immunoassay test using 145 individual plasma from colorectal cancer, premalignant individuals and healthy controls. ∆Np73α seroreactivity showed the highest diagnostic ability to discriminate between groups. The combination of ∆Np73α, ∆Np73β and p73 proteoforms seroreactivity were able to improve their individual diagnostic ability. Competitive inhibition experiments further demonstrated the presence of unique specific epitopes in ΔNp73 isoforms not present in p73, with several colorectal patients showing unique and specific seroreactivity to the ΔNp73 proteoforms. Overall, we have increased the complexity of the humoral immune response to the p53-family in cancer patients, showing that the proteoforms derived from the alternative splicing of p73 possess a higher diagnostic ability than the canonical protein, which might be extensive for p53 and p63 proteins.This work was supported by the Ramon y Cajal programme of the MINECO and the financial support of the PI17CIII/00045 grant from the AES-ISCIII program to R.B., cofounded by FEDER funds. G.D. acknowledges the financial support of PI15/00246 grant of the FIS and Cátedra UAM-Roche en Medicina de Innovación. M.G-A. was supported by a contract of the Programa Operativo de Empleo Juvenil y la Iniciativa de Empleo Juvenil (YEI) with the participation of the Consejería de Educación, Juventud y Deporte de la Comunidad de Madrid y del Fondo Social Europeo. We thank the excellent technical support of Maricruz Sánchez. A.M-C. is a recipient of a FPU fellowship from the Ministerio de Educación, Cultura y Deporte

    KCNQ4 K(+) channels tune mechanoreceptors for normal touch sensation in mouse and man.

    No full text
    Item does not contain fulltextMutations inactivating the potassium channel KCNQ4 (K(v)7.4) lead to deafness in humans and mice. In addition to its expression in mechanosensitive hair cells of the inner ear, KCNQ4 is found in the auditory pathway and in trigeminal nuclei that convey somatosensory information. We have now detected KCNQ4 in the peripheral nerve endings of cutaneous rapidly adapting hair follicle and Meissner corpuscle mechanoreceptors from mice and humans. Electrophysiological recordings from single afferents from Kcnq4(-/-) mice and mice carrying a KCNQ4 mutation found in DFNA2-type monogenic dominant human hearing loss showed elevated mechanosensitivity and altered frequency response of rapidly adapting, but not of slowly adapting nor of D-hair, mechanoreceptor neurons. Human subjects from independent DFNA2 pedigrees outperformed age-matched control subjects when tested for vibrotactile acuity at low frequencies. This work describes a gene mutation that modulates touch sensitivity in mice and humans and establishes KCNQ4 as a specific molecular marker for rapidly adapting Meissner and a subset of hair follicle afferents
    corecore