12 research outputs found

    Deep spectroscopic luminosity function of Abell 85: no evidence for a steep upturn of the faint-end slope

    Get PDF
    We present a new deep determination of the spectroscopic LF within the virial radius of the nearby and massive Abell\,85 (A85) cluster down to the dwarf regime (M* + 6) using VLT/VIMOS spectra for 2000\sim 2000 galaxies with mr21_r \leq 21 mag and μe,r24\langle \mu_{e,r} \rangle \leq 24 mag arcsec2^{-2}. The resulting LF from 438 cluster members is best modelled by a double Schechter function due to the presence of a statistically significant upturn at the faint-end. The amplitude of this upturn (αf=1.580.15+0.19\alpha_{f} = -1.58^{+0.19}_{-0.15}), however, is much smaller than that of the SDSS composite photometric cluster LF by Popesso et al. 2006, αf\alpha_{f} \sim -2. The faint-end slope of the LF in A85 is consistent, within the uncertainties, with that of the field. The red galaxy population dominates the LF at low luminosities, and is the main responsible for the upturn. The fact that the slopes of the spectroscopic LFs in the field and in a cluster as massive as A85 are similar suggests that the cluster environment does not play a major role in determining the abundance of low-mass galaxies.Comment: 6 pages, 4 figures, accepted at MNRAS lette

    280 one-opposition near-Earth asteroids recovered by the EURONEAR with the <i>Isaac Newton</i> Telescope

    Get PDF
    Context. One-opposition near-Earth asteroids (NEAs) are growing in number, and they must be recovered to prevent loss and mismatch risk, and to improve their orbits, as they are likely to be too faint for detection in shallow surveys at future apparitions. Aims. We aimed to recover more than half of the one-opposition NEAs recommended for observations by the Minor Planet Center (MPC) using the Isaac Newton Telescope (INT) in soft-override mode and some fractions of available D-nights. During about 130 h in total between 2013 and 2016, we targeted 368 NEAs, among which 56 potentially hazardous asteroids (PHAs), observing 437 INT Wide Field Camera (WFC) fields and recovering 280 NEAs (76% of all targets). Methods. Engaging a core team of about ten students and amateurs, we used the THELI, Astrometrica, and the Find_Orb software to identify all moving objects using the blink and track-and-stack method for the faintest targets and plotting the positional uncertainty ellipse from NEODyS. Results. Most targets and recovered objects had apparent magnitudes centered around V ~ 22.8 mag, with some becoming as faint as V ~ 24 mag. One hundred and three objects (representing 28% of all targets) were recovered by EURONEAR alone by Aug. 2017. Orbital arcs were prolonged typically from a few weeks to a few years; our oldest recoveries reach 16 years. The O−C residuals for our 1854 NEA astrometric positions show that most measurements cluster closely around the origin. In addition to the recovered NEAs, 22 000 positions of about 3500 known minor planets and another 10 000 observations of about 1500 unknown objects (mostly main-belt objects) were promptly reported to the MPC by our team. Four new NEAs were discovered serendipitously in the analyzed fields and were promptly secured with the INT and other telescopes, while two more NEAs were lost due to extremely fast motion and lack of rapid follow-up time. They increase the counting to nine NEAs discovered by the EURONEAR in 2014 and 2015. Conclusions. Targeted projects to recover one-opposition NEAs are efficient in override access, especially using at least two-meter class and preferably larger field telescopes located in good sites, which appear even more efficient than the existing surveys

    Deep spectroscopy in nearby galaxy clusters - V. The Perseus cluster

    Get PDF
    Dwarfs are the largest population of galaxies in number in the nearby Universe. Deep spectroscopic data are still missing to obtain a better understanding of their formation and evolution processes. This study shows the results obtained from a spectroscopic campaign in the Perseus cluster. We have obtained 963 new galaxy spectra. We have measured the recessional velocity of the galaxies by using a cross-correlation technique. These data have been used to obtain the clustermembership, the dynamics of the galaxies, and the spectroscopic luminosity function (LF) of the cluster. The cluster membership was obtained by using the peak + gap technique, reporting a total of 403 galaxies as cluster members within 1.4r200. The mean velocity and velocity dispersion of the cluster galaxies are Vc = 5258 km s-1 and \u3c3c = 1040 km s-1, respectively. We obtained M200 = 1.2 7 1015 M 99 and r200 = 2.2 Mpc for this cluster. The clusters members were classified blue and red according to their g - r stellar colour. The velocity dispersion of these two families of galaxies is different, indicating that the blue galaxies can be classified as recently accreted into the cluster. We present the spectroscopic galaxy LF of the cluster. This function turned to be flat: \u3b1 = 0.99 \ub1 0.06. In addition, blue and red galaxies show similar densities in the faint end of the LF. This indicates that Perseus does not have a population of red dwarf galaxias as large as other nearby clusters. We have compared the LF of the Perseus clusterwith other spectroscopic LFs of nearby clusters and those from cosmological simulations. This comparison shows that the spectroscopic LF of nearby galaxy cluster is far from universal

    Deep spectroscopy of nearby galaxy clusters – II. The Hercules cluster

    Get PDF
    We carried out the deep spectroscopic observations of the nearby cluster A2151 with AF2/WYFFOS@WHT. The caustic technique enables us to identify 360 members brighter than Mr=16M_r = -16 and within 1.3R200R_{200}. We separated the members into subsamples according to photometrical and dynamical properties such as colour, local environment and infall time. The completeness of the catalogue and our large sample allow us to analyse the velocity dispersion and the luminosity functions of the identified populations. We found evidence of a cluster still in its collapsing phase. The LF of the red population of A2151 shows a deficit of dwarf red galaxies. Moreover, the normalized LFs of the red and blue populations of A2151 are comparable to the red and blue LFs of the field, even if the blue galaxies start dominating one magnitude fainter and the red LF is well represented by a single Schechter function rather than a double Schechter function. We discuss how the evolution of cluster galaxies depends on their mass: bright and intermediate galaxies are mainly affected by dynamical friction and internal/mass quenching, while the evolution of dwarfs is driven by environmental processes which need time and a hostile cluster environment to remove the gas reservoirs and halt the star formation.Comment: Accepted for publication on MNARS, 15 pages,16 figures, 6 table

    Near infrared polarimetry of a sample of blazars

    No full text
    Polarization variability is one of the most ubiquitous characteristic of blazars. Near infrared (NIR)polarization measurements of blazars are not common, contrary to the optical ones. Nonetheless, the NIR regime can be essential to understand correlated or non-correlated behaviour between the optical and radio energy ranges. In this work, we report on NIR polarimetry measurements of a sample of 28 blazars, collected with LIRIS at WHT/La Palma in several campaigns during 2011. The majority of the blazars were observed more than one epoch using two filters (J and Ks). Here we present preliminary results for few selected targets
    corecore