39 research outputs found

    Mini-discs around spinning black holes

    Full text link
    Accretion onto black holes in wind-fed binaries and in collapsars forms small rotating discs with peculiar properties. Such ``mini-discs'' accrete on the free-fall time without help of viscosity and nevertheless can have a high radiative efficiency. The inviscid mini-disc model was previously constructed for a non-rotating black hole. We extend the model to the case of a spinning black hole, calculate the structure and radiative efficiency of the disc and find their dependence on the black hole spin. If the angular momenta of the disc and the black hole are anti-aligned, a hydrodynamic analog of Penrose process takes place.Comment: 8 pages, 9 figures, accepted to MNRA

    White dwarfs stripped by massive black holes: sources of coincident gravitational and electromagnetic radiation

    Full text link
    White dwarfs inspiraling into black holes of mass \MBH\simgt 10^5M_\odot are detectable sources of gravitational waves in the LISA band. In many of these events, the white dwarf begins to lose mass during the main observational phase of the inspiral. The mass loss starts gently and can last for thousands of orbits. The white dwarf matter overflows the Roche lobe through the L1L_1 point at each pericenter passage and the mass loss repeats periodically. The process occurs very close to the black hole and the released gas can accrete, creating a bright source of radiation with luminosity close to the Eddington limit, L1043L\sim 10^{43}~erg~s1^{-1}. This class of inspirals offers a promising scenario for dual detections of gravitational waves and electromagnetic radiation.Comment: 5 pages, 3 figures. Minor changes. Accepted in MNRAS Letters on August 6 201

    Electromagnetic Counterparts of Compact Object Mergers Powered by the Radioactive Decay of R-process Nuclei

    Full text link
    The most promising astrophysical sources of kHz gravitational waves (GWs) are the inspiral and merger of binary neutron star(NS)/black hole systems. Maximizing the scientific return of a GW detection will require identifying a coincident electro-magnetic (EM) counterpart. One of the most likely sources of isotropic EM emission from compact object mergers is a supernova-like transient powered by the radioactive decay of heavy elements synthesized in ejecta from the merger. We present the first calculations of the optical transients from compact object mergers that self-consistently determine the radioactive heating by means of a nuclear reaction network; using this heating rate, we model the light curve with a one dimensional Monte Carlo radiation transfer calculation. For an ejecta mass ~1e-2 M_sun[1e-3 M_sun] the resulting light curve peaks on a timescale ~ 1 day at a V-band luminosity nu L_nu ~ 3e41[1e41] ergs/s (M_V = -15[-14]); this corresponds to an effective "f" parameter ~3e-6 in the Li-Paczynski toy model. We argue that these results are relatively insensitive to uncertainties in the relevant nuclear physics and to the precise early-time dynamics and ejecta composition. Due to the rapid evolution and low luminosity of NS merger transients, EM counterpart searches triggered by GW detections will require close collaboration between the GW and astronomical communities. NS merger transients may also be detectable following a short-duration Gamma-Ray Burst or "blindly" with present or upcoming optical transient surveys. Because the emission produced by NS merger ejecta is powered by the formation of rare r-process elements, current optical transient surveys can directly constrain the unknown origin of the heaviest elements in the Universe.Comment: 14 pages, 7 figures; accepted to MNRAS; title changed to highlight r-process connection and new figure added

    Radiative decay of keV-mass sterile neutrino in magnetized electron plasma

    Full text link
    The radiative decay of sterile neutrinos with typical masses of 10 keV is investigated in the presence of an external magnetic field and degenerate electron plasma. Full account is taken of the modified photon dispersion relation relative to vacuum. The limiting cases of relativistic and nonrelativistic plasma are analyzed. The decay rate calculated in a strongly magnetized plasma, as a function of the electron number density, is compared with the unmagnetized plasma limit. It is found that the presence of the strong magnetic field in the electron plasma suppresses the catalyzing influence of the plasma by itself on the sterile-neutrino decay rate

    Termite sensitivity to temperature affects global wood decay rates.

    Get PDF
    Deadwood is a large global carbon store with its store size partially determined by biotic decay. Microbial wood decay rates are known to respond to changing temperature and precipitation. Termites are also important decomposers in the tropics but are less well studied. An understanding of their climate sensitivities is needed to estimate climate change effects on wood carbon pools. Using data from 133 sites spanning six continents, we found that termite wood discovery and consumption were highly sensitive to temperature (with decay increasing >6.8 times per 10°C increase in temperature)-even more so than microbes. Termite decay effects were greatest in tropical seasonal forests, tropical savannas, and subtropical deserts. With tropicalization (i.e., warming shifts to tropical climates), termite wood decay will likely increase as termites access more of Earth's surface
    corecore