142 research outputs found

    Motivations, experiences and aspirations of trainee nursing associates in England: a qualitative study

    Get PDF
    Background The nursing associate role was developed in England in response to the ‘Shape of Caring’ review. It has been implemented to fulfil two aims; to bridge the gap between registered nurses and healthcare assistants, and to provide an alternative route into registered nursing in light of workforce shortages. Other high income countries deploy second level nurses within their healthcare systems, however the UK has a turbulent history with such roles. The previous state enrolled nurse was phased out in the 1990s, and more recently the assistant practitioner (AP) role has faced wide variation in titles, scope and pay. Little is known about those who have embarked on the new nursing associate training course and their experiences of the role. Methods An exploratory qualitative study was undertaken using focus groups of trainee nursing associates to generate in-depth discussion about their motivations, experiences of training, and career aspirations. Three focus groups (n = 15) took place in December 2018 using a purposive sample of trainee nursing associates registered at a University in the North of England. Two researchers facilitated each group discussion at a time and place convenient for participants. The discussions were audio recorded, transcribed and data was analysed thematically. Results This study found that trainee nursing associates are motivated by affordable, local, career development. During training they face challenges relating to clinical support, academic workload and uncertainty about future career opportunities. They experience role ambiguity both individually and across the wider organisation. Trainee nursing associates rely on broad support networks to build their occupational identity. Conclusions The barriers and facilitators of trainee nursing associate personal development have implications for policy and practice relating to recruitment and retention. The results increase our understanding of this emerging role, and have informed the development of a larger longitudinal cohort study. Further research is required to evaluate the impact of this new role

    Greedy Solution of Ill-Posed Problems: Error Bounds and Exact Inversion

    Full text link
    The orthogonal matching pursuit (OMP) is an algorithm to solve sparse approximation problems. Sufficient conditions for exact recovery are known with and without noise. In this paper we investigate the applicability of the OMP for the solution of ill-posed inverse problems in general and in particular for two deconvolution examples from mass spectrometry and digital holography respectively. In sparse approximation problems one often has to deal with the problem of redundancy of a dictionary, i.e. the atoms are not linearly independent. However, one expects them to be approximatively orthogonal and this is quantified by the so-called incoherence. This idea cannot be transfered to ill-posed inverse problems since here the atoms are typically far from orthogonal: The ill-posedness of the operator causes that the correlation of two distinct atoms probably gets huge, i.e. that two atoms can look much alike. Therefore one needs conditions which take the structure of the problem into account and work without the concept of coherence. In this paper we develop results for exact recovery of the support of noisy signals. In the two examples in mass spectrometry and digital holography we show that our results lead to practically relevant estimates such that one may check a priori if the experimental setup guarantees exact deconvolution with OMP. Especially in the example from digital holography our analysis may be regarded as a first step to calculate the resolution power of droplet holography

    Heparanase expression is a prognostic indicator for postoperative survival in pancreatic adenocarcinoma

    Get PDF
    Pancreatic ductal adenocarcinoma has a median survival of less than 6 months from diagnosis. This is due to the difficulty in early diagnosis, the aggressive biological behaviour of the tumour and a lack of effective therapies for advanced disease. Mammalian heparanase is a heparan-sulphate proteoglycan cleaving enzyme. It helps to degrade the extracellular matrix and basement membranes and is involved in angiogenesis. Degradation of extracellular matrix and basement membranes as well as angiogenesis are key conditions for tumour cell spreading. Therefore, we have analysed the expression of heparanase in human pancreatic cancer tissue and cell lines. Heparanase is expressed in cell lines derived from primary tumours as well as from metastatic sites. By immunohistochemical analysis, it is preferentially expressed at the invading edge of a tumour at both metastatic and primary tumour sites. There is a trend towards heparanase expression in metastasising tumours as compared to locally growing tumours. Postoperative survival correlates inversely with heparanase expression of the tumour reflected by a median survival of 34 and 17 month for heparanase negative and positive tumours, respectively. Our results suggest, that heparanase promotes cancer cell invasion in pancreatic carcinoma and could be used as a prognostic indicator for postoperative survival of patients

    The Effect of Interpersonal Psychotherapy and other Psychodynamic Therapies versus ‘Treatment as Usual’ in Patients with Major Depressive Disorder

    Get PDF
    Major depressive disorder afflicts an estimated 17% of individuals during their lifetimes at tremendous suffering and costs. Interpersonal psychotherapy and other psychodynamic therapies may be effective interventions for major depressive disorder, but the effects have only had limited assessment in systematic reviews.Cochrane systematic review methodology with meta-analysis and trial sequential analysis of randomized trials comparing the effect of psychodynamic therapies versus ‘treatment as usual’ for major depressive disorder. To be included the participants had to be older than 17 years with a primary diagnosis of major depressive disorder. Altogether, we included six trials randomizing a total of 648 participants. Five trials assessed ‘interpersonal psychotherapy’ and only one trial assessed ‘psychodynamic psychotherapy’. All six trials had high risk of bias. Meta-analysis on all six trials showed that the psychodynamic interventions significantly reduced depressive symptoms on the 17-item Hamilton Rating Scale for Depression (mean difference −3.12 (95% confidence interval −4.39 to −1.86;P<0.00001), no heterogeneity) compared with ‘treatment as usual’. Trial sequential analysis confirmed this result.We did not find convincing evidence supporting or refuting the effect of interpersonal psychotherapy or psychodynamic therapy compared with ‘treatment as usual’ for patients with major depressive disorder. The potential beneficial effect seems small and effects on major outcomes are unknown. Randomized trials with low risk of systematic errors and low risk of random errors are needed

    Zebrafish usp39 Mutation Leads to rb1 mRNA Splicing Defect and Pituitary Lineage Expansion

    Get PDF
    Loss of retinoblastoma (Rb) tumor suppressor function is associated with human malignancies. Molecular and genetic mechanisms responsible for tumorigenic Rb downregulation are not fully defined. Through a forward genetic screen and positional cloning, we identified and characterized a zebrafish ubiquitin specific peptidase 39 (usp39) mutation, the yeast and human homolog of which encodes a component of RNA splicing machinery. Zebrafish usp39 mutants exhibit microcephaly and adenohypophyseal cell lineage expansion without apparent changes in major hypothalamic hormonal and regulatory signals. Gene expression profiling of usp39 mutants revealed decreased rb1 and increased e2f4, rbl2 (p130), and cdkn1a (p21) expression. Rb1 mRNA overexpression, or antisense morpholino knockdown of e2f4, partially reversed embryonic pituitary expansion in usp39 mutants. Analysis of pre-mRNA splicing status of critical cell cycle regulators showed misspliced Rb1 pre-mRNA resulting in a premature stop codon. These studies unravel a novel mechanism for rb1 regulation by a neuronal mRNA splicing factor, usp39. Zebrafish usp39 regulates embryonic pituitary homeostasis by targeting rb1 and e2f4 expression, respectively, contributing to increased adenohypophyseal sensitivity to these altered cell cycle regulators. These results provide a mechanism for dysregulated rb1 and e2f4 pathways that may result in pituitary tumorigenesis

    DEAD-Box Protein Ddx46 Is Required for the Development of the Digestive Organs and Brain in Zebrafish

    Get PDF
    Spatially and temporally controlled gene expression, including transcription, several mRNA processing steps, and the export of mature mRNA to the cytoplasm, is essential for developmental processes. It is well known that RNA helicases of the DExD/H-box protein family are involved in these gene expression processes, including transcription, pre-mRNA splicing, and rRNA biogenesis. Although one DExD/H-box protein, Prp5, a homologue of vertebrate Ddx46, has been shown to play important roles in pre-mRNA splicing in yeast, the in vivo function of Ddx46 remains to be fully elucidated in metazoans. In this study, we isolated zebrafish morendo (mor), a mutant that shows developmental defects in the digestive organs and brain, and found that it encodes Ddx46. The Ddx46 transcript is maternally supplied, and as development proceeds in zebrafish larvae, its ubiquitous expression gradually becomes restricted to those organs. The results of whole-mount in situ hybridization showed that the expression of various molecular markers in these organs is considerably reduced in the Ddx46 mutant. Furthermore, splicing status analysis with RT-PCR revealed unspliced forms of mRNAs in the digestive organ and brain tissues of the Ddx46 mutant, suggesting that Ddx46 may be required for pre-mRNA splicing during zebrafish development. Therefore, our results suggest a model in which zebrafish Ddx46 is required for the development of the digestive organs and brain, possibly through the control of pre-mRNA splicing

    Establishing Zebrafish as a Novel Exercise Model: Swimming Economy, Swimming-Enhanced Growth and Muscle Growth Marker Gene Expression

    Get PDF
    Zebrafish has been largely accepted as a vertebrate multidisciplinary model but its usefulness as a model for exercise physiology has been hampered by the scarce knowledge on its swimming economy, optimal swimming speeds and cost of transport. Therefore, we have performed individual and group-wise swimming experiments to quantify swimming economy and to demonstrate the exercise effects on growth in adult zebrafish

    Robotic injection of zebrafish embryos for high-throughput screening in disease models

    Get PDF
    The increasing use of zebrafish larvae for biomedical research applications is resulting in versatile models for a variety of human diseases. These models exploit the optical transparency of zebrafish larvae and the availability of a large genetic tool box. Here we present detailed protocols for the robotic injection of zebrafish embryos at very high accuracy with a speed of up to 2000 embryos per hour. These protocols are benchmarked for several applications: (1) the injection of DNA for obtaining transgenic animals, (2) the injection of antisense morpholinos that can be used for gene knock-down, (3) the injection of microbes for studying infectious disease, and (4) the injection of human cancer cells as a model for tumor progression. We show examples of how the injected embryos can be screened at high-throughput level using fluorescence analysis. Our methods open up new avenues for the use of zebrafish larvae for large compound screens in the search for new medicines
    corecore